A New Extension of Quasi Lindley Distribution: Properties and Applications

  • Authors

    • Patrick Udoudo Unyime
    • Ette Harrison Etuk
    2019-10-24
    https://doi.org/10.14419/ijasp.v7i2.29791
  • Abstract

    In this paper, we introduced and studied the statistical properties of a new distribution called the Marshall-Olkin extended quasi Lindley distribution. Specifically, we derived the crude moment, moment generating function, quantile function, and distributions of order statistics

    based on the distribution. The maximum likelihood point estimation method was used to estimate the parameters of the newly introduced model. Some AR minfication processes were discussed. We illustrated the applicability of the distribution using a real dataset.

    Keywords: Marshal-Olkin family of distributions; maximum likelihood estimates; minification processes; quasi Lindley distribution; quantile function.

  • References

    1. [1] L. Benkhelifa, †The Marshall-Olkin extended generalised Lindley distribution: Properties and applicationsâ€, Communication in Statistics-Simualtion and Computation, 46(10), (2017), 8306-8330.

      [2] G. M. Cordeiro, A. J. Lemonte, M. M. Ortega (2014), “The Marshall-Olkin family of distributions: Mathematical properties and new modelsâ€, Journal of Statistical Theory and Practice, Doi: 10.1080/15598608.2013.802659.

      [3] I. Elbatal, L. S. Diab, M. Elgarhy, “Exponentiated quasi Lindley distributionâ€, International Journal of Reliability and Applications, 17(1), (2016), 1-19.

      [4] M. Elgarhy, I. Elbatal, L. S. Diab, H. K. Hwas, A. W. Shawki, “Transmuted generalised quasi Lindley distributionâ€, International Journal of Scientific Engineering and Science, 1(7), (2017), 1-8.

      [5] M. Elgarhy, I. Elbatal, M. A. U. Haq, A. S. Hassan, “Transmuted Kumaraswamy quasi Lindley distribution with applicationsâ€, Annals of Data Science, 5(4), (2018), 565-581.

      [6] M. Ghica, N. D. Poesina, I. Prasacu, “Exponentiated power quasi Lindley distribution. submodels and some propertiesâ€, Review of the Air Force Academy, 2(34), (2017), 75-84.

      [7] M. E. Ghitany, M. Al–Buraies, D. K. Al–Mutari, “Marshall-Olkin extended Lindley distribution and its applicationâ€, International Journal of Applied Mathematics, 25(5), (2012),709–721.

      [8] W. Gui, “Marshall–Olkin extended log–logistic distribution and its minification processesâ€, 7(80), (2013), 3947–3961.

      [9] A. S. Hassan, I. Elbatal, S. E. Hameda, “Weibull quasi Lindley distribution applications to lifetime data, International Journal of Applied Mathematics and Statistics, 55(3), (2016), 63-80.

      [10] R. Hibatullah, Y. Widyaningsih, S. Abdullah, “Marshall–Olkin extended power Lindley distribution with applicationâ€, J. Ris. and Ap. Mat., 2(2), (2018), 84–92.

      [11] K. Jayakumar, and M. G. Babu, “Some generalisations of Weibull distribution and related processesâ€, Journal of Statistical Theory and Applications, 14(4), (2015), 425–434.

      [12] K. K. Jose, “Marshall–Olkin family of distributions and their applications in reliability theory, time series modelling and stress–strenght analysisâ€, Int. Statistical Inst: Proc. 58th World Statistical Congress, (2011), 3918–3923.

      [13] K. K. Jose, S. R. Naik, M. M. Ristic, “Marshall-Olkin q–Weibull distribution and max–min processesâ€, Stat papers, 51(2010),837–851.

      [14] E. Krishnan, K. K. Jose, and M. M. Ristic, “Applications of Marshall–Olkin Fr´etchet distributionâ€, Communication in Statistics–Simulation and

      Computation, 42(2013), 76–89.

      [15] L. Lepetu, B. O. Oluyede, B. Makubate, S. Foya,and P. Mdlongwa, “Marshall–Olkin log–logistic extended Weibull distribution: Theory, Properties and applicationsâ€, Journal of Data Science, 15 (2017), 691-722.

      [16] D. V. Lindley, “Fiducial distributions and Bayes’ theoremâ€, Journal of the Royal Statistical Society, Series A (20), (1958), 102–107.

      [17] M. Mansoor, M. H. Tahir, G. M. Cordeiro, S. B. Provost, and A. Alzaatreh, “The Marshall–Olkin logistic–exponential distributionâ€, Communication in Statistics–Theory and Methods, https://doi.org/10.1080/03610926.2017.1414254.

      [18] A. W. Marshall, and I. Olkin, “A new method of adding a parameter to a family of distributions with application to the exponential and Weibull familiesâ€,

      Biometrika, 84(3), (1997), 641–652.

      [19] B. O. Oluyede, and S. Rajasooriya, “The Mc-Dagum distribution and its statistical properties with applicationsâ€, Asian Journal of Mathematics and

      Applications, 2013 (2013), 1-16.

      [20] R. Roozegar, F. Esfandiyari, “The McDonald quasi Lindley distribution and its statistical properties with applicationsâ€, J. Stat. Appl. Proc., 4(3), (2015),

      375–386.

      [21] R. Shanker, A. Mishra, “A quasi Lindley distributionâ€, African Journal of Mathematics and Computer Science Research, 6(4), (2013), 64–71.

  • Downloads

  • Received date: 2019-08-26

    Accepted date: 2019-09-26

    Published date: 2019-10-24