Quasi-E-Bayesian criteria versus quasi-Bayesian, quasi-hierarchical Bayesian and quasi-empirical Bayesian methods for estimating the scale parameter of the Erlang distribution
-
2016-05-10 https://doi.org/10.14419/ijasp.v4i1.6095 -
Erlang Distribution, Quasi-Bayes Estimates, Quasi-E-Bayeses Estimates, Quasi-Empirical Bayes Estimates, Quasi-Hierarchical Bayes Esti-mates. -
Abstract
This paper proposes a new modification for the E-Bayesian method of estimation to introduce a new technique namely Quasi E-Bayesian method (or briefly QE-Bayesian). The suggested criteria built in replacing the likelihood function by the quasi likelihood function in the E-Bayesian technique. This study is devoted to evaluate the performance of the new method versus the quasi-Bayesian, quasi-hierarchical Bayesian and quasi-empirical Bayesian approaches in estimating the scale parameter of the Erlang distribution. All estimators are obtained under symmetric loss function [squared error loss (SELF))] and four different asymmetric loss functions [Precautionary loss function (PLF), entropy loss function (ELF), Degroot loss function (DLF) and quadratic loss function (QLF)]. The properties of the QE-Bayesian estimates are introduced and the relations between the QE-Bayes and quasi-hierarchical Bayes estimates are discussed. Comparisons among all estimators are performed in terms of mean square error (MSE) via Monte Carlo simulation.
-
References
- A. K. Erlang, The theory of probabilities and telephone conversations. Nyt Tidsskrift for Matematik B 20, 6 (1909)87-98.
- K. Harischandra, S. S. Rao, A note on statistical inference about the traffic intensity parameter in M/Ek/1 queue. Sankhya B, 50, (1988)144-148.
- S. K. Bhattacharyya, N. K. Singh, Intensity in M/Ek/1 queue. Far. East, Journal of Math and Science.2, 57 (1994) 57-62.
- Y. Fang, Hyper-Erlang distribution model and its application in wireless mobile networks. Wireless Networks, 7(2001)211-219. http://dx.doi.org/10.1023/A:1016617904269.
- Y. H. AbdelKader, Computing the moments of order statistics from nonidentically distributed Erlang variables. Statistical Papers, 45(2003)563-570. http://dx.doi.org/10.1007/BF02760568.
- P. k. Suri, B. Bhushan, A. Jolly, Time estimation for project management life cycles: A simulation approach, International Journal of Computer Science and Network Security, 9, 5(2009)211-215.
- A. Haq, S. dey, Bayesian estimation of Erlang distribution under different prior distributions, Journal of Reliability and Statistical Studies, 4, 1 (2011)1-30.
- R. A. Bakoban, Bayesian and non-Bayesian estimation of Erlang distribution under progressive censoring, IJRRAS, 11, 3 (2012)524-535.
- A. H. Khan, T. R. Jan, Bayesian Estimation of Erlang Distribution under Different Generalized Truncated Distributions as Priors, Journal of Modern Applied Statistical Methods, 11, 2 (2012)416-442.
- R. W. M. Wedderbuem, Quasi-Likelihood Functions, Generalized Models and the Gauss-Newton Method, Biometrika, 61, 3 (1974) 439-443.
- M. Han, Expected Bayesian Method for Forecast of Security Investment, Journal of Operations Research and Management Science 14, 5 (2005) 89-102.
- M. Han, E-Bayesian Method to Estimate Failure Rate, The Sixth International Symposium on Operations Research and Its Applications (ISOR06) Xinjiang (2006)299-311.
- Q. Yin, H. Liu, Bayesian estimation of geometric distribution parameter under scaled squared error loss function, Conference on Environmental Science and Information Application Technology (2010)650-653.
- J. Wei, B. Song, W. Yan, Z. Mao, Reliability Estimations of Burr-XII Distribution under Entropy Loss Function, IEEE (2011) 244-247. http://dx.doi.org/10.1109/icrms.2011.5979276.
- Z. F. Jaheen, H. M. Okasha, E-Bayesian Estimation for the Burr type XII model based on type-2 censoring, Applied Mathematical Modelling 35 (2011) 4730 - 4737. http://dx.doi.org/10.1016/j.apm.2011.03.055.
- G. Cai, W. Xu, W. Zhang, P. Wang, Application of E-Bayes method in stock forecast, Fourth International Conference on Information and Computing (2011)504-506. http://dx.doi.org/10.1109/icic.2011.40.
- H. M. Okasha, E-Bayesian estimation of system reliability with Weibull distribution of components based on type-2 censoring, Journal of Advanced Research in Scientific Computing 4, 4 (2012)34-45.
- X. Wu, E-Bayesian Estimation of Failure Probability under Zero-failure Data with Double Hyper Parameters, Journal of Applied Mechanics and Materials 190-191 (2012) 977-981. http://dx.doi.org/10.4028/www.scientific.net/AMM.190-191.977.
- R. Azimi, F, Yaghamei, B. Fasihi, E-Bayesian estimation based on generalized half Logistic progressive type-II censored data, International Journal of Advanced Mathematical Science 1, 2 (2013) 56-63.
- N. Javadkani, P. Azhdari, R. Azimi, On Bayesian estimation from two parameter Bathtub-shaped lifetime distribution based on progressive first-failure-censored sampling, International Journal of Scientific World 2, 1 (2014) 31-41. http://dx.doi.org/10.14419/ijsw.v2i1.2513.
- H. Liu, T. Yin, C. Wang, E-Bayes Estimation of Rayleigh Distribution Parameter, Journal of Applied Mechanics and Materials 596 (2014) 305-308. http://dx.doi.org/10.4028/www.scientific.net/AMM.596.305.
- H. M. Okasha, E-Bayesian Estimation for the Lomax distribution based on type-II censored data, Journal of the Egyptian Mathematical Society 22, 3 (2014) 489-495. http://dx.doi.org/10.1016/j.joems.2013.12.009.
- H. M. Reyad, S. O. Ahmed, E-Bayesian analysis of the Gumbel type-ii distribution under type-ii censored scheme, International Journal of Advanced Mathematical Sciences 3, 2 (2015) 108-120. http://dx.doi.org/10.14419/ijams.v3i2.5093.
- H. M. Reyad, S. O. Ahmed, Bayesian and E-Bayesian estimation for the Kumaraswamy distribution based on type-ii censoring. International Journal of Advanced Mathematical Sciences, 4, 1 (2016):10-17. http://dx.doi.org/10.14419/ijams.v4i1.5750.
- Reyad, H. M, Younis, A, M,. Alkhedir, A. A.(2016). Comparison of Estimates using Censored Samples from Gompertz Model: Bayesian, E-Bayesian, Hierarchical Bayesian and Empirical Bayesian Schemes. International Journal of Advanced Statistics and Probability 4, 1(2016):47-61 http://dx.doi.org/10.14419/ijasp.v4i1.5914.
- A. Mood, F. A. Graybill, D. Boes, Introduction to the Theory of Statistics. McGraw-Hill Series in Probability and Statistics, 1974.
- J. G. Nostrom, The use of precautionary loss function in risk analysis, IEEE Transaction on Reliability, 45, 3(1996)400-403.
- D. K. Dey, M. Gosh, C. Srinivasan, Simultaneous estimation of parameter under entropy loss, Journal of Statistical Planning and Inference (1987) 347-363.
- M. h. Degroot, Optimal Statistical Decision, McGraw-Hill Inc. (1970).
- M. K. Bhuiyan, M. K. Roy, M. F. Iman, Minimax estimation of the parameter of Rayleigh distribution, (2007) 207-212.
- M. Han, The structure of hierarchical prior distribution and its applications, Chinese Operations Research and Management Science 6, 3 (1997) 31-40.
- D. V. Lindley, A. F. Smith, Bayes estimation for the linear model, Journal of Royal Statistical Society B, 34 (1972)1-41.
- O. Shojaee, R. Azimi, M. Babanezhad, Empirical Bayes Estimators of Parameter and Reliability Function for Compound Rayleigh Distribution under Record Data, American Journal of Theoretical and Applied Statistics, 1, (2012) 12-15. http://dx.doi.org/10.11648/j.ajtas.20120101.12.
-
Downloads
-
Received date: 2016-04-09
Accepted date: 2016-05-02
Published date: 2016-05-10