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ABSTRACT
In this paper two new bivariate Pareto Type I distributions are introduced. The first distribution is based on copula and the second distribution is based on mixture and copula. Maximum likelihood and Bayesian estimations are used to estimate the parameters of the proposed distribution. A Monte Carlo Simulation study is carried out to study the behavior of the proposed distributions. A real data set is analyzed to illustrate the performance and flexibility of the proposed distributions.  
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1 INTRODUCTION
The Pareto distribution was first introduced by Vilfredo Pareto as a model for the distribution of income. It is used in a wide range of ﬁelds such as insurance, business, engineering, survival analysis, reliability and life testing, see for example Davis and Feldstein [1], Cox and Oakes [2], Cohen and Whitten [3], and Bhattacharya, [4].The probability density function (Pdf) of the Pareto type I (PI) distribution is given by
	
	(1)


The cumulative density function (Cdf) is given by
	.
	(2)


The survivor function (SF) is given by
	 
	


The hazard rate function (HRF) is given by:
	 , 
	(3)


The cumulative hazard rate function (CHRF) is given by:
	
	(4)


Howlader [5] studied Bayesian prediction and estimation from Pareto distribution of the first kind. Bayesian estimators of the scale parameter of Pareto type I model have been obtained by direct method and Lindley’s approach, see Setiya, Kumar, and Pande [6], for more details see Mahmoud, Sultan, and Moshref [7].
A copula is a statistical method that approaches the joint distribution in terms of the marginal distributions and then links the marginal distribution functions together. A copula function captures the dependence relationships amongst the different random variables. This approach provides a general structure of modeling multivariate distributions. Sklar [8] has introduced this method in the context of probabilistic metric spaces. This approach has been formalized by Clemen and Winkler [9]. Copula have become a standard tool with many applications for examples, multi-asset pricing, credit portfolio modeling, risk management, see Longin and Solnik [10], Li [11],  Patton [12],  Joe [13], Lopez-Paz et al [14], and Board et al [15]. Adham and Walker [16] applied the M mixture representation of the Gompertz distribution in order to motivate a new family of distributions which extends naturally to the multivariate case using copula. In addition, they found out that the mixing idea and the use of copula method allowed full dependency structures and was easy to analyse.
Many researchers have used copula to propose new bivariate and multivariate distributions. Kundu and Dey [17] studied the maximum likelihood estimators of the unknown parameters for the Marshall-Olkin bivariate Weibull distribution using EM algorithm. Diakarya [18] studied the properties of Archimedean copulas of stochastic processes and proposed analytical expressions of the survival copulas of Archimedean processes. Sankaran and Kundu [19] discussed several other new properties for bivariate Pareto model such as the maximum likelihood estimator by using two stage estimator and analyzed two data sets for the bivariate Pareto Type II distribution. Achcar et al [20] introduced Bayesian analysis for a bivariate generalized exponential distribution with censored data from Copula functions and using MCMC methods to simulate samples. Dou et al [21] used order statistics to construct multivariate distributions with fixed marginals of the Bernstein copula in terms of a finite mixture distribution. 
The main aim of this article is to establish new bivariate Pareto type I distribution because of the important role of multivariate and bivariate Pareto type I in income’s analysis and ability to fit some upper tail of multivariate socio-economic and income’s data, see Mandelbrot [22] and  Yeh [23]. The rest of the paper is organized as follows: in Section2, we introduce bivariate Pareto Type I distribution based on Gaussian copula and bivariate Pareto Type I distribution based on mixture and Gaussian copula. Parameters estimation of the proposed new bivariate Pareto Type I distributions is performed using maximum likelihood and Bayesian methods in Section 3. In Section 4, Monte Carlo simulation study and analyses of real data are conducted to show the usefulness and flexibility of the proposed distributions. Finally, some concluding remarks are presented in Section 5.



 2 Bivariate Pareto Type I distributions
	In this section Bivariate Pareto Type I (BPI) distribution based on Gaussian copula and BPI distribution based on mixture and Gaussian copula are constructed.  
2.1 Construction of BPI distribution based on Gaussian copula
The simplest method to construct BPI with Gaussian copula is by using the inversion method for univariate distribution. Therefore, the joint Cdf is given by
 
where are identical independent distribution(i.i.d) from PI. 
Then, the joint Pdf of  and  is given by
, 
wherefore, are given by (1) and (2) respectively, and    is the copula density, and it is obtained from Gaussian copula given by 
	
	
(5)



Therefore, the joint Pdf of  and  can be rewritten as 
	,
	       (6)



For more explanation, see Joe [24], and Flores [25]. Observing that  is a parameter associated to the dependence between the random variable and  which related to Kendall’s rank correlation and the Spearman’s rank correlation given by (7) and (8) respectively. 
	,
	(7)

	
	(8)



[image: ]Graphical representation of the Pdf, Cdf, and contours plots of the BPI distributions based on Gaussian copula for two different values of the copula parameter  are shown in Figure (1). 
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Figure (1): Pdf, Cdf and contours of BPI distribution based on Gaussian copula for ,0.85) 



2.2 Construction of BPI distribution based on mixture and Gaussian copula 

Let M denotes the Pdf for a random variable T on  which has a mixture representation. If  is a two-dimensional random vector conditionally independent given, where  and have bivariate gamma distribution, then the joint Pdf can be written in the form of compound distribution given by
	

	(9)


For j=1,2,
	,
	(10)


therefore, the function can be rewritten as: 
	

	      (11)


where  is distributed as gamma (2,1) given by  
	, j=1,2.
	(12)


For more details, see Walker and Stephens [26], Adham and Walker [16]. 
The joint Pdf of BPI distribution based on M mixture representation with Gaussian copula given by (9), can be rewritten as
	

	(13)



3 Estimation
The estimation of the parameters for BPI distribution based on Gaussian copula and BPI distribution based on mixture and Gaussian copula using maximum likelihood (ML) and Bayesian methods will be preformed. 
[bookmark: _Toc448341042][bookmark: _Toc449372087][bookmark: _Toc449373093][bookmark: _Toc449376958][bookmark: _Toc469136187]3.1 Parameters estimation for BPI distribution based on Gaussian Copula 
3.1.1 Maximum likelihood estimation
If  are i.i.d sample of size n from BPI distribution given in (6), then the log-likelihood function can be written as 
	


	




 (14)


where  given in (5), and is fixed, we don’t need to differential of estimate it, and
 . 
The ML estimate of the unknown parameters can be obtained by maximizing (14) with respect to the unknown parameters and, such that , and . That is, differentiating (14) with respect to  and equating it to zero, the first partial derivatives are given by: 

	      



Therefore, ML estimates of the parameter can be obtained by solving the system of non-linear equations in (15) numerically. 




Sampling information matrix and approximate confidence interval
	Approximate confidence interval of the parameters can be obtained based on the asymptotic distribution of the ML estimates of  when . Using the large sample and under appropriate regularity conditions, the ML estimates for the parameters  have approximately multivariate normal distribution with mean  and asymptotic variance-covariance matrix . See (Algorithm 1 in Appendix).
[bookmark: _Toc449791205]Then the   approximate confidence interval for the parameters are:
      and      ,
where,  is the upper  the percentile of the standard normal distribution.
3.1.2  Bayesian estimation 
Let  be a bivariate random samples from BPI distribution given by (6) and assuming non informative independent priors for the parameters such that.

	, j=1, 2,     .


	
(16)


Therefore, the joint posterior distribution can be written as
	 ,j=1,2.                                                              (17)



To get the posterior summaries of interest, samples are simulated for the joint posterior distribution in (17) by using MCMC, see Silva and Lopes [27]. 
That is, simulate samples from the conditional distributions     
, ,  
by using Metropolis-Hastings algorithm, since the conditional distributions in this case are not identified as known distributions, see Achcar et al [20]. 


3.2 Parameters estimation for BPI distribution based on mixture and Gaussian Copula 
3.2.1  Maximum likelihood estimation 
Suppose that,  is a random samples from BPI distribution given in (13), and    is a random samples from bivariate gamma distribution. The likelihood function is given by:
	

   







where  is given by(5),  and ,
 and 
The likelihood function can be rewritten as 
	


	
(18)












The log-likelihood function can be written as
	


,
 .      (19)                                               
                                                                 


The ML estimates of the unknown parameters can be obtained by maximizing (19) with respect to the unknown parameters and. 
That is, ML estimates can be obtained by solving numerical the five dimensional optimization problems. The first derivative are given by 
    , j=1,2,
           , .
Sampling information matrix and approximate confidence interval is obtained by Algorithm 1 in Appendix.
3.2.2 Bayesian estimation 
If we have a bivariate random sample ,  n=1,2,…,n, from BPI distribution, then the corresponding latent variables , n=1,2,…,n, is generated from gamma(2,1) where The Gibbs sampler procedure is used to obtain Bayesian estimates of the parameters of the BPI distribution based on mixture and Gaussian copula. Assuming non-informative prior distribution of the parameters as in (17). Therefore, the joint posterior distribution can be written as 
	,,


where  is given by (18).
Now, the full conditional distributions of the Gibbs sampler can be obtained by the following: 
1. Samplefrom .
	
,


where. Sample of  fromare calculated using Algorithm 2 in Appendix.
Then sample  as follow 
	, j=1,2 , i=1,2,…,n.
	(21)


2. Sample  from for 
	
 , j=1,2 , i=1,2,…,n.


If, then the full conditional distribution of  
,   j=1, 2.
The cumulative distribution is given by

.
Let ,
by using inverse method to sample 
	     ,

	(22)


where  is Uniform .
3. Finally, sample  from
  i=1,2,…,n.
 Metropolis hasting is used to obtain estimate of. See Abd Elaal et al [28].

4 Simulation study
4.1 Simulation study of BPI distribution based on Gaussian Copula 
     A Monte Carlo simulation study is performed to investigate and compare the ML and Bayesian estimates of the parameters, while  and are fixed. Different samples sizes, n=35, 50,100,150, were considered using different values of the parameters, with   set to the minimum fixed values and the copula parameter taking the values . The BPI distribution is fitted to the data and the ML and Bayesian estimate of the parameters of BPI distribution based on Gaussian copula are obtained. Then, the average estimates along with their relative mean square error (RMSE) over 1000 replication are calculated. The results are reported in Tables (1) and (2).












 Table (1): MLE and Bayesian estimation of BPI parameters based on Gaussian Copula and with their Mean, RMSE with   for different    value of parameters
	Sample size
	Parameters
	MLE

	Bayesian estimation


	
	
	Mean
	RMSE
	Mean
	RMSE

	n=35
	
	1.2708
	0.2987
	1.2109
	0.0391

	
	
	1.2277
	0.2792
	1.0633
	0.0357

	
	
	0.7162
	0.0669
	0.6652
	0.0125

	n=50
	
	1.2669
	0.1058
	1.2190
	0.0266

	
	
	1.1525
	0.0937
	1.0963
	0.0245

	
	
	0.7056
	0.0229
	0.6767
	0.0093

	n=100
	
	1.2315
	0.0478
	1.2082
	0.0176

	
	
	1.1290
	0.0475
	1.1231
	0.0146

	
	
	0.7009
	0.0078
	0.6886
	0.0022

	n=150
	
	1.2164
	0.0238
	1.2143
	0.0096

	
	
	1.1173
	0.0259
	1.1094
	0.0052

	
	
	0.6998
	0.0032
	0.6928
	0.0022






Table (2): MLE and Bayesian estimation of BPI parameters based on Gaussian Copula and with their Mean, RMSE with   for different    value of parameters
	Sample size
	Parameters
	MLE

	Bayesian estimation


	
	
	Mean
	RMSE
	Mean
	RMSE

	n=35
	
	1.2505
	0.2534
	1.1769
	0.0393

	
	
	1.1535
	0.2593
	1.0616
	0.0360

	
	
	0.8076
	0.0350
	0.7750
	0.0054

	n=50
	
	1.2408
	0.0776
	1.2231
	0.0389

	
	
	1.1315
	0.0696
	1.1237
	0.0296

	
	
	0.8009
	0.0057
	0.7836
	0.0014

	n=100
	
	1.2242
	0.0430
	1.2160
	0.0104

	
	
	1.1254
	0.0453
	1.1154
	0.0114

	
	
	0.8012
	0.0040
	0.7924
	0.0018

	n=150
	
	1.2042
	0.0154
	1.2128
	0.0090

	
	
	1.1028
	0.0132
	1.1095
	0.0051

	
	
	0.8018
	0.0039
	0.7950
	0.0009


It can be seen from Tables (1) and (2) that, for all selected values of  and, the RMSE of the estimates  and  become smaller as the sample size increases. In addition, it can be seen that we have better estimates and smaller RMSE when the copula parameter. Moreover, the Bayesian method gave better and more accurate estimates for the parameters than the ML method especially with small samples size. 
4.2 Simulation study of BPI distribution based on mixture and Gaussian Copula  
        A Monte Carlo simulation study is performed to investigate and compare ML and Bayesian estimates of the parameters of  BPI distribution based on Mixture and Gaussian copula. The comparison and the performances of the estimates are studied mainly with respect to their RMSE. These are illustrated in Tables (3), and (4) using different samples sizes n=10, 25, 50, 100 and the different values of the parameters, with  set to minimum fixed values and copula parameter. For each sample of generated data, the BPI distribution is fitted and the ML and Bayesian estimate of the parameters of BPI distribution based on mixture and Gaussian copula are obtained. Then, the average estimates along with their relative mean square error (RMSE) over 1000 replication are calculated. 












Table (3): MLE and Bayesian estimation of BPI parameters based on Mixture and Gaussian Copula and with their Mean, RMSE with
 for different value of parameters
	Sample size
	Parameters
	MLE

	Bayesian estimation


	
	
	Mean
	RMSE
	Mean
	RMSE

	n=10
	
	1.2578
	0.0923
	1.2097
	0.0195

	
	
	1.1557
	0.0913
	1.1089
	0.0190

	
	
	0.7003
	0.0287
	0.8151
	0.2697

	n=25
	
	1.2431
	0.0843
	1.2030
	0.0043

	
	
	1.1413
	0.0832
	1.1028
	0.0043

	
	
	0.7001
	0.0109
	0.7638
	0.1453

	n=50
	
	1.2296
	0.0453
	1.2015
	0.0015

	
	
	1.1296
	0.0477
	1.1013
	0.0016

	
	
	0.7004
	0.0059
	0.7370
	0.0818

	n=100
	
	1.2179
	0.0251
	1.2001
	0.0002

	
	
	1.1176
	0.0260
	1.1001
	0.0002

	
	
	0.9680
	0.0066
	0.7363
	0.0763






Table (4): MLE and Bayesian estimation of BPI parameters based on Mixture and Gaussian Copula and with their Mean, RMSE with
 for different value of parameters
	Sample size
	Parameters
	MLE

	Bayesian estimation


	
	
	Mean
	RMSE
	Mean
	RMSE

	n=10
	
	1.2798
	0.1583
	1.2097
	0.0544

	
	
	1.1618
	0.1612
	1.1088
	0.0188

	
	
	0.7930
	0.0268
	0.8435
	0.0925

	n=25
	
	1.2431
	0.0842
	1.2046
	0.0053

	
	
	1.1409
	0.0830
	1.1042
	0.0054

	
	
	0.8016
	0.0087
	0.7884
	0.0268

	n=50
	
	1.2299
	0.0455
	1.1999
	0.0005

	
	
	1.1163
	0.0390
	1.0999
	0.0005

	
	
	0.7976
	0.0068
	0.7587
	0.0686

	n=100
	
	1.2182
	0.0254
	1.1997
	0.0003

	
	
	1.1116
	0.0381
	1.0997
	0.0003

	
	
	0.7988
	0.0066
	0.7497
	0.0803



The results in Tables (3) and (4) indicate that for all selected values of  and, the RMSE of the estimates  and  become smaller as the sample size increases. The copula parameters at  provides better estimate of the parameters copula to   . Also, the Bayesian method provides better and more accurate estimates for the parameters compared to the ML method especially with small samples sizes.
4.3 Models comparison 
The performance of the two proposed BPI distributional models are compared based on RMSE. In addition, Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC) are calculated. 

 














	
Table (5): RMSE for BPI distribution based on Gaussian copula and RMSE for BPI distribution based on mixture and Gaussian copula 


	

	The Models
	n
	RMSE

	
	
	MLE
	Bayesian estimation
	AIC
	BIC

	
	
	
	
	
	
	
	
	
	

	BPI based on Gaussian copula
	50
	.0776
	.0696
	.0057
	.0389
	.0296
	.0015
	520.6
	524.4

	
	100
	.0430
	.0453
	.0040
	.0104
	.0114
	.0018
	1039.9
	1045.1

	BPI based on Gaussian copula& mixture
	50
	.0455
	.0390
	.0068
	.0005
	.0005
	.0686
	511.5
	515.4

	
	100
	.0254
	.0381
	.0066
	.0003
	.0003
	.0803
	1018.6
	1023.8


 
the results are reported in Table (5) indicate that the BPI distribution based on mixture and Gaussian copula have lower RMSE, AIC, and BIC values compared to BPI distribution based on Gaussian copula. Therefore, we conclude that BPI distribution based on mixture and Gaussian copula is more flexible compared to BPI based on Gaussian copula.










4.5 Data Analysis
This data set represents the two different measurements of stiffness, ‘Shock’ and ‘Vibration’ of each of 30 boards. Here  represents the first measurement (Shock) involves sending a shock wave down the board and  represents the second measurement (Vibration) is specified while vibrating the board. The data set was originally from William Galligan, and it has been reported in Johnson et al [28], and illustrated in Table (6). The PI distribution is fitted to the marginals.


Table (6): Two different stiffness measurements of 30 boards

	No.
	Shock
	Vibration
	No.
	Shock
	Vibration
	No.
	Shock
	Vibration

	1.
	1889
	1651
	2.
	2403
	2048
	3.
	2119
	1700

	4.
	1645
	1627
	5.
	1976
	1916
	6.
	1712
	1713

	7.
	1943
	1685
	8.
	104
	1820
	9.
	2983
	2794

	10.
	1745
	1600
	11.
	1710
	1591
	12.
	2046
	1907

	13.
	1840
	1841
	14.
	1867
	1685
	15.
	1859
	1649

	16.
	1954
	2149
	17.
	1325
	1170
	18.
	1419
	1371

	19.
	1828
	1634
	20.
	1725
	1594
	21.
	2276
	2189

	22.
	1899
	1614
	23.
	1633
	1513
	24.
	2061
	1867

	25.
	1856
	1493
	26.
	1727
	1412
	27.
	2168
	1896

	28.
	1655
	1675
	29.
	2326
	2301
	30.
	1490
	1382






















[bookmark: _GoBack]Table (7) shows the Kolmogorov-Simrnov test along with associated p-values for the two marginals.

Table (7): The K-S test for the data
	The sample
	p-value
	K-S

	(Shock)
	0.06705
	0.2318

	(Vibration)
	0.05274
	0.2462







The BPI distribution based on the Gaussian copula and the BPI distribution based on mixture and Gaussian copula are fitted and the results are shown in Table (8). The AIC and BIC values in Table (8) indicate that

           Table (8): summary for the estimation and the test for comparisons two models
	Model
	Method
	
	
	
	AIC
	BIC

	BPI based on Gaussian copula
	MLE
	2.817
	2.281
	0.975
	162.9042
	167.1078

	
	Bayesian 
	2.767
	2.272
	0.970
	
	

	BPI based on Gaussian copula and Mixture
	MLE
	2.706
	2.226
	0.984
	136.5605
	140.7641

	
	Bayesian 
	2.784
	2.187
	0.951
	
	


 
The BPI distribution based on mixture and Gaussian copula provides better fit for the data compared to BPI model based on Gaussian copula. 
5 SUMMARY REMARKS
In this article, we proposed two new bivariate distributions the first one is BPI distribution based on Gaussian copula and the second one is BPI distribution based on mixture and Gaussian copula. Parameter estimates of the proposed new BPI distributions are obtained using ML and Bayesian methods. Monte Carlo simulation study and analyses of real data are conducted to show the usefulness of the proposed distributions. We can conclude that the BPI distribution based on mixture and Gaussian copula is more flexible and performed better than the BPI distribution based on Gaussian copula.    
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APPENDIX
1. Algorithm 1 
Fisher Information Matrix 
,
where  is the asymptotic Fisher information matrix.
The second partial derivatives will be simplified as follows:
 ,   ,  

 
,        
 , 
 
  ,  
 
. 

Algorithm 2
1. Introduce a non-negative latent variable , such that
	
,   j=1,2,   i=1,2,…,n.
	


2. Choose the initial values of  to be 
	,  i=1,2,…,n.
	



3. Sample  from Uniform.

· 
   
where.


 


Let 

let  , 
· 
where , 

then 
let,  
then 
4. Sample  from 
	 ,
	







find the Cdf  of 

 is a double truncated distribution that can be sampled by using the inverse distribution function method. Then, for Uniform
· Generating 



, j=1,2 , i=1,2,…,n.
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