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Abstract 
 

In this article, we discuss a vehicle routing problem with time windows (VRPTW) for the transport of perishable products with considera-

tion of road roughness constraints. The proposed model includes simultaneous pickup and delivery operations. Unlike almost all previous 

studies, which mainly consider travel distance and temperature as factors in product deterioration, we take into account the roughness 

condi-tions of the roads in order to preserve their quality during transport. The objective is therefore to satisfy a set of customers, while 

respecting the constraints related to multi-product transport, simultaneous pickup and delivery operations, time windows and roughness 

conditions of the roads. We express the problem in the form of a mixed linear integer program. The model is solved with CPLEX's tradi-

tional Branch & Cut (B&C) and a two-phase decomposition heuristic (TPDH). The test results show that TPDH produces satisfactory 

solutions in a short time for all instances studied, with an average time of 290,19 seconds compared to 2941,61 seconds for B&C. In 

addition, TPDH has an average deviation of +18,3 % from the total cost of the objective compared to B&C, making it a relevant option for 

applications that require fast computation. 

 
Keywords: Multi-Product VRPTW; Mechanical Damage; Perishable Products; Road Roughness Conditions. 

 

1. Introduction 

According to the FAO (Food and Agriculture Organization), 14% of the world's food production is lost between harvest and retail sale, 

mainly due to inadequate transport and storage conditions1. In addition, in developing countries, where logistics infrastructure is often 

insufficient, fruit and vegetable losses can be as high as 30 to 40 percent2. 

This study is part of the context of the vehicle routing problem (VRP), which is a category of combinatorial optimization problems aimed 

at determining the shortest routes for a fleet of vehicles to serve a set of customers with deterministic demands, from a depot. Originally 

introduced in 1959 by [1] in the context of the distribution of petroleum products, this problem is distinguished by its complexity and 

belongs to the class of NP-hard problems. It can have various constraints, such as time windows, simultaneous pickup and delivery, or 

multi-product transport. 

In recent years, route optimization within the framework of the VRP has become essential for the distribution of perishable products. These 

products require efficient transport solutions, due to their sensitivity over time and their fragility. It is therefore crucial to preserve their 

freshness and integrity during the route in order to minimize losses. This poses a growing challenge for suppliers in the face of high 

customer expectations for quality, delivery, and the speed of degradation of these products. It is therefore imperative to keep perishable 

food in optimal conditions during transport to ensure food safety and reduce waste [2]. 

Many studies have been carried out on this subject, but the main focus has been on temperature and distance of routes. These factors were 

considered to be essential elements influencing the quality of the products during transport. One aspect that is overlooked is the roughness 

of the roads. However, the vibrations and jolts caused by the roughness of the roads can seriously compromise the integrity of the products, 

resulting in additional losses during the route. 

Here we propose a VRPTW model applied to perishable products taking into account road roughness conditions. This model incorporates 

multiple product constraints, simultaneous pickup and delivery, as well as time windows. 

 
1 https://www.fao.org/cote-divoire/actualites/detail-events/fr/c/1607089/ 
2 https://www.fao.org/in-action/seeking-end-to-loss-and-waste-of-food-along-production-chain/fr/ 

http://creativecommons.org/licenses/by/3.0/
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This document is structured as follows. In the second section, we begin by examining the existing work to situate our study in the literature. 

Then we formulate the problem. After presenting the methods of solving, we analyze the results of the tests performed. The final section 

is devoted to the conclusion and prospects for future research. 

2. Literature review 

In a recent study, [3] review a VRP with time windows and heterogeneous fleet applied to perishable products. Their aim is to minimise 

the total cost of transport, taking into account various factors, such as the loss of value due to the degradation of foodstuffs, which depends 

in particular on the duration of transport and temperature. To solve this problem, they use three methods, namely, an exact algorithm, a 

heuristic based on a genetic algorithm, and a hybrid approach combining the first two.  

Continuing with a view to improving the quality of the products transported, [2] offer a new variant called Quality-Driven VRP (QDVRP), 

which analyzes the impact of hop-on hop-off routes on the quality of fresh and frozen produce in a cooperative transportation context. The 

study focuses on temperature fluctuations caused by frequent opening and closing of doors, affecting food quality. The model is solved 

with an exact algorithm. 

Also [4] present a model to optimize routes in cold chain logistics, minimizing losses during distribution, while taking into account various 

objectives, including damage to goods based on transport time. Route modeling is done using a heuristic approach to incorporate real-

world traffic conditions. The problem is solved by an ant colony algorithm (ACO) combined with a local Pareto search.  

For their part, [5] propose an optimization model for the problem of vehicle routing in the delivery of multi-product frozen foodstuffs. The 

objective of the model is to minimize delivery costs for a fleet of identical vehicles leaving from a depot. Delivery costs include transport, 

refrigeration, penalty costs, as well as those related to accumulated damage to the cargo due to transit time and depending on the specific 

characteristics of the different frozen products. A genetic algorithm is used to solve the problem. 

However, the majority of the studies reviewed indicate that temperature and travel time or distance are the major factors influencing the 

quality of perishable products during transport. However, few of them address the roughness of roads, which play a key role in the deteri-

oration of foodstuffs. 

This is how [6] stress the importance of road conditions in the distribution of fresh fruit and vegetables. They offer an improved genetic 

algorithm to optimize delivery routes, reducing logistics costs and ensuring product quality. An evaluation coefficient δij is introduced to 

quantify the impact of road irregularities during distribution, but the article does not show how this coefficient impacts the quality of the 

products during transport. 

Yet, research on mechanical damage caused by rough road conditions examines how pavement imperfections can alter the integrity of 

goods, especially sensitive ones like perishables. Research in this area takes into account a variety of factors, including the frequency and 

amplitude of vibrations experienced by food in vehicles. Several studies such as [7] and [8], explored this issue. 

In this way, [9] are based on the results of [8] to propose a multi-objective VRPTW model aimed at optimizing the distribution of mandarins 

taking into account the roughness conditions of the roads. Their study seeks to reduce the percentage of products damaged during transport. 

The model is solved with two heuristics and a metaheuristic. 

The study of [9] however is limited to a single type of product, thus restricting the scope of the results in a more realistic logistical context. 

The consideration of multiple commodities could indeed require more complex transport conditions due to the respective sensitivity of the 

products. Also, the authors limit themselves to delivery operations. However, the pickup of packaging during a delivery is a common 

practice in reality. 

The above points to the need to broaden the study of [9] including a variety of products, as well as the operations of collecting packaging 

during delivery. 

In our study, we therefore propose a single-objective VRPTW model applied to the distribution of multiple perishable products by simul-

taneously integrating product delivery and packaging pickup operations during delivery. Our approach is based on the results of the work 

of [7], which analysed the correlation between road roughness and damage to different types of products during transport.  

Indeed [7] analysed four fresh products, allowing their findings to be applied to more complex logistics contexts. In addition, the authors 

measured physical damage such as cuts and bruises, to provide a more accurate view of the impact of roads on product quality, which was 

not done in [8]. The vibrations experienced in vehicles are also compared to international standards (ASTM and ISTA), thus increasing the 

credibility of the results and clearly showing the link between roughness conditions of the roads and the quality of the products transported. 

So, based on the results of [7], we will be able to model each road segment in such a way as to measure the impact of roughness conditions 

in a context of transport of multiple perishable products with consideration of simultaneous pickup and delivery operations. 

3. Description of the problem 

3.1. Presentation of the problem 

Our approach, called multi-product vehicle routing problem with simultaneous pickup and delivery and time windows (MP-VRPSPDTW), 

is a variant of the VRP. It is illustrated in Fig. 1. The problem is to plan multiple routes for a homogeneous fleet of vehicles, starting from 

a depot to serve geographically distributed customers, while meeting deterministic demands for packaging pickup and delivery of various 

perishable products. All this must be done in accordance with the time constraints of the customers and taking into account the roughness 

conditions of the roads. The objective is to minimize all the routes, by satisfying the following assumptions: 

• (1) A homogeneous fleet of vehicles serves all customers. 

• (2) Each vehicle starts and ends its route at the depot no more than once. 

• (3) Each customer has a request for the pickup of packaging and delivery of various perishable products, which must be fully met. 

• (4) The total demand for pickup and delivery on a route must comply with the capacity constraints of the vehicle assigned to that 

route and the perishability constraints of the products. 

• (5) Customers have time windows during which they must be served. 

• (6) Each customer is visited exactly once by a single vehicle. 

• (7) The total cost of transport and the loss of economic value of products during transport are minimised. 
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Fig. 1: MP-VRPSPDTW Schematic. 

3.2. Mathematical formulation 

The MP-VRPSPDTW can be defined as a directed graph G =  (V, A), where V =  {0, … , n} is the set of nodes comprising the depot {0} 

and A =  {(i, j) ∶ i, j ∈ V, i ≠ j}, the set of edges. A homogeneous fleet of K = {1, … , m} vehicles is available at the depot. The problem can 

be formulated as a mixed linear integer program using the following notation: 

 
The indices 

i, j represent the indices of the nodes of the set N =  {0, … , n} 

k represents the vehicle index in the set K =  {1, … , m} 

p represents the index of the products in the set P =  {1, … , l} 

The Sets 

N = {0, ..., n} is the set of nodes composed by the clients and the depot 

N\{0} = {1, ..., 
n} 

is the set of customers 

K =  {1, … , m} is the set of vehicles 

P =  {1, … , l} is the set of products 

The settings 

dij is the distance from the node i to the node j 
Pijp represents the percentage of damage per unit load per unit of time experienced by the product p on the arc (i, j) 

dpiip is the customer's i product p packaging pickup request  

ddeip is the customer's i product p delivery request  

Qp is the capacity of the vehicle reserved for the product p 

fi is the client's i lower time window  

gi is the client's i upper time window  

Si represents the service time at the node i 
tij represents the travel time between the node i and the node j 
pup represents the unit price of the product p 

α represents a weighting factor related to the economic value losses of the products 

c1 represents the cost of fuel consumption per unit distance due to rough road conditions 

c2 represents the maintenance/repair cost per unit of distance due to rough road conditions 

c3 is the cost to the tires per unit of distance due to rough road conditions 

c4 represents the depreciation of the vehicle per unit distance due to rough road conditions 

Decision variables 

xij
k is a binary variable that is equal to 1 if the vehicle k travels directly from the node i to the node j and 0 otherwise 

yik is a binary variable that is equal to 1 if the vehicle k visits the node i and 0 otherwise 

piijp 
represents the sum of requests collected from customers, routed to the node i (including the node i), and transported over the arc 

(i, j) 

deijp represents the sum of the requests to be delivered to customers, routed past the node i, and transported over the arc (i, j) 

λik indicates the time it takes for the vehicle k to arrive at the node i 
ξjp represents the accumulation of the percentage of damage sustained by the product p delivered to the customer j 

 

The first component of the objective function (1) aims to minimise transport costs, while the second component minimises losses in the 

economic value of all products during transport. 

 

min Z = ∑ ∑ ∑ (c1 + c2 +  c3 + c4)dijxij
km

k=1
n
j=0

n
i=0 +  α ∑ ∑  ddejppupξjp

l
p=1

n
j=0                                                                                        (1) 

 

Under constraints: 

Constraints (2) require that each vehicle can leave and return to the depot only once. 

 

∑ x0j
kn

j=1  ≤ 1   ∀ k = 1, . . . , m  (2) 

   

Constraints (3) to (5) ensure that a customer is visited exactly once by a single vehicle. 

 

∑ ∑ xij
km

k=1 =  1 n
j=0   ∀ i =  1, . . . , n, i ≠ j  (3) 

   

∑ xij
kn

j=0  = yi
k  ∀ i =  0, . . . , n, k = 1, . . . , m, i ≠ j   (4) 
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∑ yi
km

k=1  = 1  ∀ i =  1, . . . , n  (5) 

   

The constraints (6) limit the number of vehicles leaving the depot to the size of the available fleet. 

 

∑ y0
km

k=1  ≤ m   (6) 

   

The constraints (7) ensure the conservation of flows, i.e. a vehicle must leave a node after serving it. 

 

∑ xij
kn

i=0  = ∑ xji
kn

i=0   ∀ j =  1, . . . , n, k = 1, . . . , m, i ≠ j  (7) 

   

Constraints (8) and (9) define the pickup and delivery flows, respectively. 

 
∑ pijip

n
i=0 − ∑ piijp

n
i=0 =  dpijp  ∀ j =  1, . . . , n, p = 1, . . . , l, i ≠ j  (8) 

   
∑ deijp

n
i=0 −  ∑ dejip

n
i=0 =  ddejp   ∀ j =  1, . . . , n, p = 1, . . . , l, i ≠ j  (9) 

   

Constraints (10) to (12) ensure that the capacity of the vehicle assigned to a route is not exceeded. 

 

piijp + deijp ≤  Qp ∑ xij
km

k=1   ∀ i, j =  0, . . . , n, p = 1, . . . , l, i ≠ j  (10) 

   

∑ ∑ dpiipxij
kn

j=1 ≤  Qp n
i=1   ∀ k =  1, . . . , m, p =  1, . . . , l, i ≠ j  (11) 

   

∑ ∑ ddeipxij
kn

j=1 ≤  Qp n
i=1   ∀ k =  1, . . . , m, p =  1, . . . , l, i ≠ j  (12) 

   

Constraints (13) and (14) ensure that all customer pickup and delivery requests are met. 

 
∑ pii0p

n
i=1  =  ∑ dpiip

n
i=1   ∀ p = 1, . . . , l  (13) 

   
∑ de0ip

n
i=1  =  ∑ ddeip

n
i=1   ∀ p = 1, . . . , l  (14) 

   

Constraints (15) and (16) apply time windows. Constraints (16) also help eliminate sub-towers. 

 

fi  ≤ λik ≤  gi  ∀ i = 0, . . . , n, k = 1, . . . , m  (15) 

   

λik + Si + tij  −  λjk ≤ (1 − x ij
k)M  ∀ i, j = 0, . . . , n, k = 1, . . . , m, i ≠ j, j ≠ 0  (16) 

   

Constraints (17) accumulate the percentage of damage per unit load per unit of time inflicted on products delivered to customers. 

 

ξjp ≥  ξip + Pijptij + (xij
k − 1)M  ∀ i, j = 0, . . . , n, k = 1, . . . , m, p = 1, . . . , l, i ≠ j, j ≠ 0  (17) 

   

Constraints (18) and (19) ensure that the cumulative percentage of damaged products varies between 0 and 1. 

 

ξjp ≥ 0  ∀ j = 0, . . . , n, p = 1, . . . , l  (18) 

   

ξjp ≤ 1  ∀ j = 0, . . . , n, p = 1, . . . , l  (19) 

   

Finally, constraints (20) and (21) specify the domains of the decision variables. 

 

xij
k, yi

k ∈  {0, 1}  ∀ i, j =  0, . . . , n, k = 1, . . . , m, i ≠ j   (20) 

   

λik, piijp, deijp ≥  0  ∀ i, j =  0, . . . , n, k = 1, . . . , m, p = 1, . . . , l, i ≠ j  (21) 

3.3. Calculation of the percentage of damage per unit load per unit of time inflicted on products delivered to customers 

(𝐏𝐢𝐣𝐩) 

[7] are examining the impact of truck vibration on mechanical damage to fresh fruits and vegetables during transport in Thailand. The 

study measured vibration levels (vertical, lateral and longitudinal) over a number of routes, focusing on the main distribution routes from 

producers to packing houses, then to distribution centers and finally to retailers. 

The objective of this work is to measure the percentages of damage suffered by products according to the type of road taken by the vehicle. 

Four products were tested: head lettuce, cabbage, Chinese pear and Chinese plum. 

Vehicle speeds are between 30 and 90 km/h, with an average speed of 80 to 90 km/h on roads in good condition, and 30 to 40 km/h on 

roads in poor condition. 

The vibration measurements presented by the authors were carried out on the following specific paths: 

• From the pickup centers located in Chiang Mai to the Chiang Mai Packing House. 

• From Chiang Mai Packing House to Bangkok Distribution Center. 

• From the distribution center in Bangkok to retailers located in Bangkok. 
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The test results showed that the roads between the pickup centers (Chiang Mai) and the packing house (Chiang Mai) had GRMS (G Root 

Mean Square) levels of 0.238 vertical, 0.106 lateral, and 0.061 longitudinal. The road between the packing house (Chiang Mai) and the 

distribution center (Bangkok) had GRMS levels of 0.224 (vertical), 0.079 (lateral), and 0.050 (longitudinal). Finally, the roads between the 

distribution center (Bangkok) and retailers (Bangkok) had GRMS of 0.191 (vertical), 0.072 (lateral), and 0.054 (longitudinal). 

GRMS, which measures the intensity of vibrations, is used to assess their impact on goods during transport. 

The authors concluded that roads with the highest vibration levels increase the damage to products during the route. 

Based on the results of [7], we determine the percentage of damage suffered per product per unit load per unit of time (Pijp) which will 

allow us to quantify the accumulation of mechanical damage suffered by the products as a function of the roughness conditions of the roads 

used. 

The expression for this percentage is given by equation (23). It is obtained from the average travel time, given by equation (22), and the 

percentage of loss per unit load measured over the total length of the path. 

 

Average travel time (mn) =  
Travel distance (km)

Average speed (km/h)
× 60                                                                                                                            (22) 

 

Pijp (%) =  
Percentage of loss per unit load (%) 

Average travel time (mn)
                                                                                                                                                (23) 

 

Table 1 shows the value of Pijp for each type of product on the different road categories. The calculation is made from the data provided 

by [7]. 

 
Table 1: Rate of Damage Inflicted on Products Per Unit Load Per Unit of Time (PIjp) 

Road 
Average travel time 
(min) 

Pijp(%) 

Origin Destination 
Head let-

tuce 

Cab-

bage 

Chinese 

pear 

Chinese 

Plum 

Pickup centres (Chiang Mai) Packing House (Chiang Mai) 96 0,469 0,521 0,406 0,156 

Packing House (Chiang Mai) 
Distribution Center (Bang-

kok) 
600 0,05 0,067 0,048 0,017 

Distribution Center (Bang-
kok) 

Retailers (Bangkok) 15 0,667 1 1,4 0,333 

3.4. Classification of roads 

Based on data from Table 1 and the map of Thailand showing transport routes, provided by [7], we propose a classification of the different 

roads studied in three categories: 

• Rural roads: Average vibration levels are similar to the route between the pickup centers (Chiang Mai) and the packing house (Chiang 

Mai). 

• Intercity roads: Average vibration levels are similar to the route from the packing house (Chiang Mai) to the distribution center 

(Bangkok). 

• Urban roads: Average vibration levels are similar to the route between the distribution center (Bangkok) and retailers (Bangkok). 

It can be seen in Table 1 that all products show a higher percentage of deterioration per unit load per unit of time when travelling between 

the distribution center (Bangkok) and retailers (Bangkok). This could be due to frequent vibrations in urban areas and the speeds practiced 

that could further affect the quality of the products despite the short travel time. 

4. Resolution methods 

We propose two resolution methods for the MP-VRPSPDTW: an exact resolution method and a two-phase decomposition heuristic (TPDH). 

4.1. Exact resolution method  

As the exact method, we use the traditional Branch & Cut (B&C) algorithm of CPLEX.  

4.2. Two-phase decomposition heuristic (TPDH) 

Here we present a two-phase decomposition algorithm that combines a clustering phase based on customer aggregation and a local opti-

mization phase. 

4.2.1. Phase 1: customer aggregation 

The objective of this phase is to assign customers to available vehicles taking into account the following constraints:  

• Vehicle capacity: Each vehicle has a maximum capacity that cannot be exceeded.  

• Time windows: Each customer must be served within a predefined time window.  

• Product degradation: the cumulative percentage of degradation of products transported on a road must not exceed 100%. 

Phase 1 methodology  

a) Initialization  

Each vehicle is initialized with an empty road. 

b) Aggregation 

The first customer of the vehicle is randomly selected from all the customers not yet visited. The other customers are assigned to the vehicle, 

in the vicinity of the customer in front of them, according to:  

• The remaining capacity of the vehicle. 

• Compatibility with the time windows of customers already assigned to this vehicle. 
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• The contribution to the percentage of degradation of products transported on the road. 

Outcome of Phase 1 

An initial solution where each vehicle has an assigned route that respects the defined constraints. 

4.2.2. Phase 2: local search (crossroad optimization) 

This phase aims to improve the initial solution by optimizing vehicle routes.  

Phase 2 methodology  

a) Initialization  

• The solution obtained in Phase 1 is used as a starting point. 

• An evaluation criterion is defined, combining the minimization of the cost of transportation and the cost of losses in the economic 

value of products due to roughness conditions of the roads, and compliance with time window constraints. 

b) Local search operations 

Two clients belonging to two different routes are randomly selected. The positions of the two clients are swapped if and only if: 

• The new roads respect vehicle capacity constraints. 

• New roads respect customers' time windows. 

• The cumulative percentage of product degradation remains less than or equal to 100%.  

If an improvement is achieved, the local best solution is updated, otherwise, the client exchange is canceled. 

Phase 2 discontinuation Criteria  

Phase 2 stops after a maximum number of iterations without improving the local best solution. 

4.2.3. Criterion for stopping the main program (global research) 

An evaluation criterion is defined in the main program. This criterion combines the minimization of the cost of transportation with the cost 

of losses in the economic value of products due to rough road conditions.  

If an improvement is obtained after the local search, then the overall best solution is updated, otherwise, it is retained. 

Phases 1 and 2 are repeated over a number of iterations and the algorithm must stop after a maximum number of iterations without im-

proving the overall best solution. 

4.2.4. General TPDH process 

The general TPDH process is illustrated in Fig. 2. 

5. Experiments 

5.1. Hardware and software 

The implementation of the two resolution methods, B&C and TPDH, was carried out in C++. CPLEX version 12.6 was used for the B&C 

method. The experiments were conducted on a 64-bit personal computer, with an 8th Gen Intel Core i7 processor at 2.3 GHz and 8 GB of 

RAM. 

5.2. Tested instances 

 
Fig. 2: General TPDH Process. 
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For our experiments, we use three instances of VRPTW from [10]3: C101, R104 and RC107.  

Instances C101, R104 and RC107 of [10] are distinguished from each other by the geographical distribution of customers and the constraints 

of time windows. The C101 (Clustered) instance presents clients that are geographically clustered with very strict time windows. In the 

R104 (Random) instance, clients are randomly distributed across the service area, with equally strict time windows. The Mixed Clustered 

and Random (RC107) instance combines clustered clients with randomly distributed clients, with moderately strict time windows. 

In these three instances, the maximum number of customers is 100, and a maximum of 25 homogeneous vehicles is allocated, each with a 

capacity of 200. 

5.3. Scenarios 

The different instances are tested according to four defined scenarios in order to examine in more detail the influence of road roughness 

conditions and the impact of the diversity of product sensitivity on the quality of the solutions obtained. 

Scenario 1 includes all three categories of roads: interurban, rural and urban, each representing a third of all arcs. Scenario 2 is limited to 

interurban and rural roads, divided equally (50% each). Scenario 3 covers interurban and urban roads, which are equally distributed at 50%. 

Finally, Scenario 4 includes roads in both rural and urban categories, with an equal distribution of 50% for each category. 

5.4. Economic value of products 

To accurately assess the impact of roughness conditions on product economic value losses, we offer prices based on real data4. These prices 

are shown in Table 2. 

 
Table 2: Product Price in Dollars ($) Per Kg 

Product Range of Change in Unit Price per kg Average unit price per kg 

Head lettuce 1,57 - 2,20 1,90 

Cabbage 0,60 - 1,20 0,90 
Chinese pear 2,50 - 3,00 2,75 

Chinese Plum 2,50 - 3,50 3,00 

5.5. Types of vehicles 

The study of [7] does not mention the impact of vehicle types on mechanical damage to products, but focuses on analyzing vehicle vibration 

and quantifying damage to products during transport. We therefore consider in our study a homogeneous fleet of vehicles. 

5.6. Vehicle capacity 

The capacity of each vehicle is subdivided into four separate compartments, each dedicated to a specific product. The capacity allocated to 

each compartment thus makes it possible to manage the pickup and delivery operations for the corresponding product. 

5.7. Vehicle operating costs 

To represent the operating costs of vehicles, we use the results of [11] which show that rough road conditions impact vehicle operating 

costs, particularly in terms of repair/maintenance, fuel consumption, depreciation and tyres. Table 3 shows the operating costs of vehicles 

per km. 

 
Table 3: Vehicle Operating Costs in Dollars ($) Per Km 

Parameter Value 

c1 0,214 

c2 0,131 

c3 0,044 

c4 0,10 

6. Results and discussions 

Table 4 compares the performance of B&C and TPDH for the different instances and scenarios of the MP-VRPSPDTW. The simulation is 

limited to a maximum duration of 7200 seconds. For TPDH, the number of iterations is limited to 10 for local search and 15 for the main 

program. We vary the number of clients from 10 and gradually adjust this value to analyze its impact on algorithm performance, taking 

into account the specifics of each instance and scenario. 

 
Table 4: Comparison of B&C and TPDH Test Results 

Instance 

name 

Sce-

nario 
n 

Total cost of the 

objective (B&C) 

Total cost of the 

objective (TPDH) 

Total cost of the objective 

difference between TPDH 
and B&C (%) 

CPU time 

(B&C) 

CPU time 

(TPDH) 

CPU time difference 

between TPDH and 
B&C (%) 

 

 
 

 

 
 

C101 

1 

10 81,6437 87,2798 6,90% 3,272 32,231 885,06% 

15 188,429 193,16 2,51% 2,796 57,673 1962,70% 
20 268,004 307,069 14,58% 3,337 172,69 5075,01% 

25 308,275 362,652 17,64% 196,859 608,097 208,90% 

30 398,894 455,051 14,08% 767,04 695,663 -9,31% 
35 409,019 450,39 10,11% 4352,14 895,098 -79,43% 

2 10 67,904 70,7354 4,17% 1,303 157,559 11992,02% 

 
3 http://vrp.galgos.inf.puc-rio.br/index.php/en/ 
4 https://rnm.franceagrimer.fr/ 
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15 138,392 171,19 23,70% 14,701 279,232 1799,41% 

20 245,64 264,998 7,88% 18,615 442,668 2278,02% 

25 272,986 294,071 7,72% 382,009 749,493 96,20% 

30 307,752 364,473 18,43% 7216,54 458,669 -93,64% 

3 

10 70,6117 77,8952 10,31% 2,676 105,789 3853,25% 
15 148,084 185,209 25,07% 7,955 135,885 1608,17% 

20 229,486 283,157 23,39% 9,6 668,704 6865,67% 

25 320,796 306,625 -4,42% 85,198 518,472 508,55% 
30 347,782 408,156 17,36% 3707,3 774,258 -79,12% 

35 1183,62 1093,42 -7,62% 7215,76 1208,15 -83,26% 

4 
10 129,224 129,637 0,32% 4,416 75,066 1599,86% 
15 252,478 255,38 1,15% 299,96 142,372 -52,54% 

20 443,204 466,672 5,30% 7207,52 584,579 -91,89% 

Average for C101 290,61122 311,36102 7,14% 1574,94985 438,1174 -72,18% 

R104 

1 
10 131,852 168,134 27,52% 54,808 105,564 92,61% 

15 178,327 257,548 44,42% 7200,81 152,206 -97,89% 

2 
10 144,227 197,162 36,70% 68,288 20,835 -69,49% 
15 193,054 276,972 43,47% 7207,96 119,374 -98,34% 

3 
10 180,514 190,733 5,66% 73,996 60,115 -18,76% 

15 204,922 285,413 39,28% 7201,19 105,924 -98,53% 

4 
10 257,508 293,312 13,90% 2113,47 62,962 -97,02% 

15 229,319 279,076 21,70% 7208,31 119,505 -98,34% 

Average for R104 189,965375 243,54375 28,20% 3891,104 93,310625 -97,60% 

RC107 

1 
10 110,125 179,894 63,35% 17,453 43,496 149,22% 

15 133,758 239,863 79,33% 7200,47 146,964 -97,96% 

2 
10 98,2648 132,686 35,03% 7213,73 45,692 -99,37% 
15 176,377 329,094 86,59% 7213,73 94,125 -98,70% 

3 
10 107,681 144,698 34,38% 7,201 102,048 1317,14% 

15 167,789 358,349 113,57% 7210,05 157,934 -97,81% 

4 
10 315,436 350,14 11,00% 7200,76 70,405 -99,02% 

15 534,108 707,912 32,54% 7206,6 123,162 -98,29% 

Average for RC107 205,44235 305,3295 48,62% 5408,74925 97,97825 -98,19% 

 

In Table 4 the instance name identifies the specific test cases (C101, R104, or RC107). The scenario (1, 2, 3, or 4) corresponds to the 

particular configurations of an instance. n is the number of customers to be served in a given scenario. The total cost of the objective is the 

optimized cost obtained using the B&C or TPDH methods for each scenario. This cost includes the total cost of transportation and the 

economic value losses of products weighted by the α factor. The difference in total objective cost between TPDH and B&C measures the 

relative difference between the costs obtained by these two methods. A positive value indicates that the cost of TPDH is higher than that 

of B&C, which means that TPDH is less optimal. A negative value, on the other hand, indicates a better performance of the TPDH. CPU 

time, expressed in seconds, represents the amount of time it takes for each method to solve a given scenario. The CPU time gap between 

TPDH and B&C reflects the relative difference between the CPU times of the two approaches. A negative value indicates that TPDH is 

faster than B&C. 

The results in Table 4 highlight the performance of the two methods for different instances and scenarios. For C101, the average total cost 

of the objective is 290.61 for B&C, compared to 311.36 for TPDH, an average deviation of 7.14%. Regarding CPU time, the B&C requires 

an average of 1574.95 s, compared to 438.12 s for TPDH. As a result, TPDH is approximately 72% faster than B&C across all scenarios 

tested for this instance. 

For the R104 instance, the average total cost of the objective is 189.97 for B&C and 243.54 for TPDH, a significant average deviation of 

29.08%. However, TPDH stands out for its noticeable speed, with a reduction in CPU time of almost 98% (with an average CPU time of 

3891.10 s for B&C and 93.31 s for TPDH). 

For RC107, the total objective cost gap between B&C and TPDH is particularly large, reaching 56.97% (with average costs of 205.44 for 

B&C and 305.33 for TPDH). For CPU time, TPDH is about 98% faster, with average times of 5408.75 s for B&C and 97.98 s for TPDH. 

In addition, for small instances (n = 10), B&C offers optimal costs in a reasonable amount of time for most instances and scenarios. When 

the number of customers increases (n≥25), TPDH prevails thanks to a significantly reduced computation time, despite an increase in the 

average cost gap. For example, for instance C101 (scenario 1, n = 35), the B&C requires 4352 s, compared to only 895 s for TPDH, a 

reduction of 79.43%, for a total cost gap of the objective of only 10.11%. 

Table 5 shows the experiments for MP-VRPSPDTW solved with B&C. 

In Table 5, α represents the weighting of the economic value losses of products in the objective function. It allows the relative importance 

of this component to be adjusted according to the complexity of the instance and the scenario studied. The total distance travelled is the 

sum of the distances travelled by all the vehicles. The total cost of transportation represents the costs associated with the total distance 

travelled. The total cost of economic value losses quantifies the financial losses due to product spoilage during transportation. The GAP 

(%) represents the relative deviation between the solution found and the optimal lower bound. Finally, the number of vehicles used indicates 

how many vehicles were mobilized to solve the problem. 

Analyzing the results in Table 5, it can be seen that the B&C produces high-quality solutions, with very low (%) GAP in many cases, or 

even non-existent. For example, for instance C101 (scenario 1, n = 10), the total cost of the objective is 81.64, with a 0% gap. 

However, for more complex instances, the GAP increases. For example, for instance R104 (scenario 4, n = 15), the GAP reaches 44.64%, 

revealing the limits of the method to achieve an optimal solution in complex scenarios. 

When it comes to CPU time, B&C becomes especially expensive for instances with a large number of clients or complex scenarios. As an 

example, for instance C101 (scenario 1, n = 35), the CPU time is 4352.14 seconds, an exponential increase compared to the same instance 

with n = 30 (CPU time of 767.04 seconds). This trend is confirmed for R104 and RC107 instances, where computer time frequently exceeds 

7200 seconds (or more than 2 hours), even for scenarios with a relatively small number of customers. 

On the other hand, when it comes to vehicle allocation, the B&C is very efficient, minimising the number of vehicles while respecting the 

constraints imposed. For example, for instance C101 (scenario 1, n = 10), only 3 vehicles are used. Even for n = 35, the model allocates 

only 6 vehicles, demonstrating an effective adaptation to the growth in demand. 
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These results lead to the conclusion that B&C is particularly effective for small and low-complexity instances such as C101, where it 

provides optimal or near-optimal solutions with near-zero GAPs. In addition, the algorithm accurately handles complex constraints, such 

as optimal vehicle allocation. However, its main disadvantage is its limited scalability: for large instances, CPU time explodes. 

Table 6 presents the results of the experiments for the MP-VRPSPDTW resolved with TPDH. 

 
Table 5: Results of Experiments for MP-VRPSPDTW Solved with B&C 

Instance 

Name 
Scenario n α 

Total dis-
tance trav-

eled 

Total cost 
of trans-

portation 

Total Cost 

of Eco-
nomic 

Value 

Losses 

Total cost of the 

objective 
GAP (%) CPU (s) 

Number of 
vehicles 

used 

C101 

1 

10 0,5 122 59,658 43,9714 81,6437 0 3,272 3 

15 0,5 250 122,25 132,358 188,429 0 2,796 3 

20 0,5 365 178,485 179,038 268,004 0 3,337 3 
25 0,5 409 200,001 216,548 308,275 4,15929E-005 196,859 5 

30 0,5 469 229,341 339,106 398,894 0 767,04 5 

35 0,4 580 283,62 313,4975 409,019 0 4352,14 6 

2 

10 0,5 97 47,433 40,942 67,904 0 1,303 2 

15 0,5 210 102,69 71,404 138,392 0 14,701 3 

20 0,5 324 158,436 174,408 245,64 0 18,615 3 

25 0,5 369 180,441 185,09 272,986 8,67533E-005 382,009 4 

30 0,4 437 213,693 235,1475 307,752 30,92 7216,54 5 

3 

10 0,5 118 57,702 25,8194 70,6117 0 2,676 3 
15 0,5 242 118,338 59,492 148,084 0 7,955 4 

20 0,5 394 192,666 73,64 229,486 0 9,6 4 

25 0,4 396 193,644 317,88 320,796 7,29642E-005 85,198 5 
30 0,4 528 258,192 223,975 347,782 9,80799E-005 3707,3 6 

35 4 601 293,889 222,43275 1183,62 6,67 7215,76 6 

4 
10 0,5 192 93,888 70,672 129,224 0 4,416 5 
15 0,4 406 198,534 134,86 252,478 9,92197E-005 299,96 8 

20 0,7 600 293,4 214,006 443,204 20,81 7207,52 10 

R104 

1 
10 0,5 214 104,646 54,412 131,852 8,70616E-005 54,808 2 
15 0,7 299 146,211 45,88 178,327 10,70 7200,81 3 

2 
10 1,5 220 107,58 24,43 144,227 5,34897E-005 68,288 2 

15 2 326 159,414 16,82 193,054 25,59 7207,96 4 

3 
10 2 266 130,074 25,22 180,514 3,23846E-005 73,996 2 

15 1,5 358 175,062 19,91 204,922 17,09 7201,19 3 

4 
10 2,5 242 118,338 55,668 257,508 7,612E-005 2113,47 3 

15 0,7 360 176,04 76,11 229,319 44,64 7208,31 6 

RC107 

1 
10 0,5 177 86,553 47,144 110,125 7,29338E-005 17,453 2 

15 0,5 229 111,981 43,554 133,758 16,77 7200,47 2 

2 
10 0,5 176 86,064 24,4016 98,2648 40,28 7213,73 2 

15 3 217 106,113 23,42 176,377 40,28 7213,73 2 

3 
10 0,5 176 86,064 43,234 107,681 7,74685E-005 7,201 2 
15 2 227 111,003 28,393 167,789 39,56 7210,05 2 

4 
10 2 248 121,272 97,082 315,436 36,33 7200,76 3 

15 3 340 166,26 122,616 534,108 74,57 7206,6 4 
Average 310,67 151,92 111,74 249,32 11,23 2941,61 3,81 

 

Analyzing the results in Table 6, it appears that TPDH generates longer routes on average than B&C, with a notable increase of +25% for 

all scenarios (the average total distance travelled is 389.36 for TPDH compared to 310.67 for B&C). 

Regarding the total cost of transport, the average difference is also +25%, with an average of 190.40 for TPDH against 151.92 for B&C. 

For the total cost of economic value losses, the difference is much smaller, with an average difference of +7% (with 119.57 for TPDH 

versus 111.74 for B&C). 

In terms of total cost of the lens, TPDH has an average relative deviation of +18.3% from B&C (with 294.95 for TPDH versus 249.32 for 

B&C). This gap remains acceptable in several scenarios, confirming that TPDH is a competitive alternative, especially for applications 

where reducing computation time is a priority. 

CPU time shows a crucial difference between the two methods. TPDH takes an average of 290.19 seconds, compared to 2941.61 seconds 

for B&C, a significant reduction of 90% in favor of TPDH. 

As for the number of vehicles used, the B&C is more efficient, mobilizing an average of 3.81 vehicles, compared to 5.75 vehicles for the 

TPDH. 

These results confirm that TPDH is a credible alternative to B&C. TPDH offers a balanced compromise between speed and quality of 

solutions, making it particularly suitable for large instances or contexts that require rapid resolution. 
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Table 6: Results of Experiments for MP-VRPSPDTW Solved with TPDH 

Instance Scenario n α 

Total dis-

tance trav-
eled 

Total cost of 

transporta-
tion 

Total Cost of 

Economic 
Value Losses 

Total cost of the 

objective 
CPU (s) 

Number of ve-

hicles used 
 
 

C101 

1 

10 0.5 131 64,059 46,44155 87,2798 32,231 3  

15 0.5 277 135,453 115,41438 193,16 57,673 5  

20 0.5 378 184,842 244,45484 307,069 172,69 6  

25 0.5 493 241,077 243,14905 362,652 608,097 9  

30 0.5 616 301,224 307,65394 455,051 695,663 10  

35 0.4 642 313,938 341,12905 450,39 895,098 9  

2 

10 0.5 95 46,455 48,5607 70,7354 157,559 2  

15 0.5 291 142,299 57,62944 171,19 279,232 5  

20 0.5 396 193,644 142,70845 264,998 442,668 5  

25 0.5 392 191,688 204,765885 294,071 749,493 8  

30 0.4 500 244,5 299,9325 364,473 458,669 8  

3 

10 0.5 123 60,147 35,49638 77,8952 105,789 3  

15 0.5 293 143,277 83,8638 185,209 135; 885 4  

20 0.5 475 232,275 101,763655 283,157 668,704 7  

25 0.4 450 220,05 216,43651 306,625 518,472 7  

30 0.4 590 288,51 247,76892 408,156 774,258 9  

35 4 765 374,085 179,834032 1093,42 1208,15 12  

4 
10 0.5 188 91,932 75,41061 129,637 75,066 5  

15 0.4 399 195,111 150,67227 255,38 142,372 8  

20 0.7 640 312,96 219,588365 466,672 584,579 12  

R104 

1 
10 0.5 301 147,189 41,889773 168,134 105,564 4  

15 0.7 423 206,847 72,4294 257,548 152,206 4  

2 
10 1.5 298 145,722 19,949194 197,162 20,835 3  

15 2 455 222,495 27,238615 276,972 119,374 7  

3 
10 2 363 177,507 6,612923 190,733 60,115 4  

15 1.5 517 252,813 21,73362 285,413 105,924 6  

4 
10 2.5 317 155,013 55,3195 293,312 62,962 4  

15 0.7 424 207,336 102,4853 279,076 119,505 6  

RC107 

1 
10 0.5 311 152,079 55,63057 179,894 43,496 4  

15 0.5 408 199,512 80,7028 239,863 146,964 4  

2 
10 0.5 245 119,805 25,76237 132,686 45,692 3  

15 3 398 194,622 44,82397 329,094 94,125 5  

3 
10 0.5 245 119,805 49,78608 144,698 102,048 3  

15 2 425 207,825 75,26183 358,349 157,934 4  

4 
10 2 320 156,48 96,8298 350,14 70,405 4  

15 3 433 211,737 165,3916 707,912 123,162 5  

Average 389,36 190,4 119,57 294,95 290,19 5,75  

 

7. Conclusion 

This paper introduces the single-objective MP-VRPSPDTW, for which we have developed a mathematical model solved using the tradi-

tional B&C algorithm of CPLEX and a two-phase decomposition heuristic (TPDH). Our study is distinguished by the integration of road 

roughness conditions in the context of a multi-product VRPTW, by analyzing their impact on the mechanical damage suffered by perishable 

products during their transport. 

Contrary to previous work, we propose a model integrating simultaneous pickup and delivery operations, as well as the management of 

various products with specific sensitivities. Our experiments are based on an analysis of the vibrations generated by road conditions, using 

experimental data from [7]. 

Although the B&C algorithm generates high-quality solutions (with a 0% GAP for the majority of instances and scenarios), its efficiency 

decreases for large instances, where the GAP can be as high as 74.57%. The two-phase decomposition heuristic (TPDH), although less 

stable, offers acceptable solutions in a short time (average of 290.19 seconds vs. 2941.61 seconds for B&C), making it particularly suitable 

for applications requiring fast computations. By optimizing the local and global search parameters, its potential for improvement can be 

considerable in terms of reducing the total cost of the objective function, although this can increase CPU times. 

Finally, a combination of a metaheuristic approach and multi-objective optimization could offer a better compromise between transport 

costs, loss of economic value of products and vehicle management, especially for large instances, while ensuring low CPU times. 
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