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Abstract 
 

A hybrid CRITIC-GRA method is adopted to determine the best possible parameter combinations for the ECM drilling process. The input 

process parameters considered were voltage, duty cycle, and electrolyte concentration. The performance measures considered are machin-

ing rate (MR), overcut (OC), and surface corrosion factor (SCF). CRITIC evaluates the standard deviations as 0.33, 0.29, and 0.29 for MR, 

OC, and SCF respectively. The weights were calculated as 0.327, 0.238, and 0.435 for MR, OC, and SCF respectively. It was evaluated 

that voltage at level 3 (9V), duty cycle at level 3 (90%), and electrolyte concentration at level 2 (30gm/l), were the ideal combination for 

the ECM drilling process. Duty cycle and electrolyte concentration were shown to be the most important parameters influencing quality 

features based on the ANOVA results. The confirmation results have improved the GRG by 0.1309 from the initial value. 

 
Keywords: Standard Deviations; ECM, Metal Matrix Composites; Duty Cycle; Voltage; Surface Corrosion Factor. 

 

1. Introduction 

Electrochemical machining (ECM) is an unconventional machining process that finds application in the aerospace, biomedical, and auto-

mobile industries. By carefully adjusting important parameters like electrode materials, electrolyte composition, current density, tempera-

ture, and pH, electrochemical process optimization is essential to maximizing efficiency, minimizing energy consumption, and achieving 

desired product quality. This ultimately leads to more cost-effective and sustainable applications in a variety of industries. The ECM 

parameters on Hastelloy C276 have been optimized by Siva et al. Circularity, taper angle, and metal removal rate (MRR) were among the 

machining quality metrics that were considered, along with the electrolyte (mmol L−1), feed rate (mm/rev), and duty ratio. The Technique 

for Order Preference by Similarity to the Ideal Solution (TOPSIS) multi-criteria decision-making (MCDM) process assigns a weight to 

each response using an Analytic Hierarchy Process (AHP). The results show that the metal removal rate of sodium nitrate (NaNO3) is 

higher than that of sodium chloride (NaCl) and sodium bromide (NaBr). However, it will result in a hole of poor quality. The feed rate has 

an inverse relationship with the taper angle. The ECM parameters on Al/15%SiC composites were investigated by Waghmare et al. in 2024. 

The process parameters were optimized using an L27 orthogonal array (OA). The best machining settings are found using the TOPSIS. 

Choosing the optimal combination level means the minimum surface roughness is 20 V, feed rate (f) 0.4 mm/min, and electrolyte concen-

tration (c) 30 g/lit. By choosing the optimal combination level, a maximum MRR of 25V, a feed rate of 0.4 mm/min, and an electrolyte 

concentration of 30 g/lit can be attained. Maniraj and Thanigaivelan (2019) investigated the MRR and radial overcut (ROC) of aluminum 

6061 metal matrix composites (MMCs) augmented with ground-granulated blast furnace slag (GGBS) using ECM. After analyzing vari-

ance (ANOVA), the percentage (%) composition of GGBS is determined to be the most significant factor. Additionally, the best machining 

settings for better MRR and lower ROC have been found using the MCDM technique. Higher MRR and lower ROC are best achieved with 

10 V, 50%, 35 g/l, and 12% of GGBS composition. ECM was used by Annamalai and Dhavamani (2023) to create holes in scrap aluminum 

alloy wheels (SAAW) with reinforcement in the form of alumina. By adjusting variables including voltage, duty cycle, electrolyte concen-

tration, and stirrer speed using an L18 OA experimental design, the manufactured material is machined utilizing ECM for micro-holes. The 

Preference Ranking Organization Method of Enrichment Evaluation (PROMETHEE-2) is an MCDM technique that is used to maximize 

the factors. The optimal factor levels are 10 V, 90% duty cycle, 25 g/l, and 140 rpm. ANOVA shows that the stirrer rpm contributes 31.91% 

to the ECM process, which is a dominant role. Preethi et al. (2024) investigated the ECM machinability tests of graphene-reinforced 

magnesium composite and silicon nitride (Si3N4). According to the study, the main parameters influencing MRR and surface roughness 

are feed rate and electrolyte concentration. The influence of Si3N4% on MRR was 8.1%, whereas the influence on Ra was 14.9%. The 

unique optimal solution for MRR and Ra is obtained by using the Integrated Entropy-COmplex Proportional ASsessment (COPRAS) 

approach. According to COPRAS, the ideal conditions produced a surface roughness of 6.18 μm and an MRR of 0.11285 g/min. Using the 

TOPSIS, Geethapriyan et al. (2019) examined the ECM performance on 718 Inconel. The ideal process parameter setting was determined 
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to be voltage 10 V, electrolyte concentration 30 g/l, microtool feed rate 0.1μm/s, duty ratio 33% for sodium chloride: voltage 10 V, elec-

trolyte concentration 25 g/l, microtool feed rate 1 μm/s, duty ratio 33% for sodium nitrate. Using sodium nitrate as the electrolyte solution, 

Pradeep et al. (2019) examined the effects of ECM process parameters on SS304 alloy using a polymer graphite electrode (PGE). According 

to the experimental results, the best conditions for accessing the multi-response characteristics in the ECM process with a hole within the 

aspect ratio of 0.8 micron meters are 23 g/l of electrolyte concentration, 9 V of machining voltage, and 55% duty cycle. The best-contrib-

uting factor in the selected limited parameters is determined by analyzing the process parameters using ANOVA. The findings showed that, 

with a 52.29% contribution, voltage is the most important element. Saranya et al. used a 30 vol% ethylene glycol mixed NaNO3 electrolyte 

in their L18 OA ECM studies. A workpiece made of Al7075 + 10 vol%B4C metal matrix composites with a thickness of 500 µm and a 

ceramic coating with a diameter of 360 µm is applied to the tool electrode. The ideal combination, according to Grey Relational Analysis 

(GRA), is 35 g/L of electrolyte, 9 V of voltage, 70% duty cycle, and 30% ethylene glycol. The electrolyte concentration, which is 46.36%, 

is the most promising factor according to the ANOVA. The prediction value of the Artificial Neural Network (ANN) model is 0.1675 and 

1.1400, which are quite near to the machining rate and surface corrosion factors GRA optimum values of 0.1667 and 1.1395, respectively. 

For machinability experiments using electrochemical machining (ECM), Rajan et al. (2025) have taken into consideration metal additive 

produced 316L stainless steel. Performance analysis based on the ratio analysis approach is conducted using the MCDM method, specifi-

cally entropy-based multi-objective optimization. According to the study, for the best machining performance, 14 V, 35 g l-1 NaNO3 

electrolyte concentration, and 90% duty cycle are advised. The optimal combination is 16 V, 35 g l-1 electrolyte concentration, and 60% 

duty cycle, per the major effect table. According to the results of the ANOVA, the duty cycle contributes around 27.06 percent of the 

machining performance, voltage contributes 24.015 percent, and electrolyte content contributes about 15.58 percent. In the current inves-

tigation, Geethapriyan et al. (2022) used a heat-treated copper tool electrode on aluminium 8011 alloy to carry out the ECM procedure. 

The impact of a heat-treated electrode on MRR, overcut, conicity, and circularity was examined by varying process parameters, including 

voltage, duty factor, frequency, and electrolyte concentration. The ideal parameters were found using the artificial bee colony (ABC) 

technique. Voltage (14 V), electrolyte concentration (30 gL-1), frequency (60 Hz), and duty cycle (33%) for the annealed tool electrode and 

voltage (14 V), electrolyte concentration (20 g/L), frequency (70 Hz), and duty cycle (33%) for the quenched tool electrode are the ideal 

combinations of input process parameters determined by the ABC algorithm. It is evident from the literature, that ECM process optimiza-

tion is pursued by researchers on copper, aluminum alloy and stainless steel. The MCDM application on difficult-to-cut materials especially 

on metal matrix composites is sparse. In this research the fabricated scrap alloy wheel matrix reinforced with 5% aluminum oxide (Al2O3) 

is machined using ECM, considering the L18 OA and CRITIC-GRA techniques were used for process parameter optimization. 

2. Criteria importance through intercriteria correlation -GRG method 

The CRITIC-GRA technique is a hybrid strategy that ranks the alternatives through the Grey Relational Analysis (GRA) method after 

generating criteria weights using the Criteria Importance through Intercriteria Correlation (CRITIC) method. 

2.1. Critic method 

Diakoulaki et al. (1995) initially proposed the CRITIC technique, which mines all the data provided in the evaluation criteria by analyzing 

the assessment matrix. By taking into account a criterion's association with other criteria and standard deviation, this method assesses 

criterion weights. 

In an initial decision matrix, B = (ϕij)x×y, φij, where "x" represents the number of alternatives, "y" indicates the number of criteria, and 

φij is the ith alternative's performance measure in relation to the jth criterion. 

Equation (1) is used to normalize the initial decision matrix (table 1) using the CRITIC technique and values are presented in Table 2. 

 

Dij =
ϕij−ϕj
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ϕ
j

maxj
min                                                                                                                                                                                                  (1) 

 

Where ϕj
max= max (φij,i=1…., a), and ϕj

min= min (φij,i=1…., a). 

The weights allocated to each criterion are determined by taking into account its standard deviation as well as its association with other 

criteria. Accordingly, the weight of the jth criterion Wj can be ascertained using the subsequent method (Alinezhad et al. 2019 & Krishnan 

et al. 2021): 
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Where Wjis the amount of information present in the jth criterion, can be acquired in the manner described below: 

 

Wj = σj ∑ (1 − ρij)
m
i=1                                                                                                                                                                                     (3) 

 

ρij denotes the correlation coefficient between the jth and ith criteria, σj denotes the standard deviation of the jth criterion. 

The weights for each response were then determined using CRITIC analysis to represent its respective GRA relative relevance. Equation 

3, which computes the correlation coefficient and standard deviation, was applied to the array of GRC. Tables 3 and 4 provide the correla-

tion coefficient and standard deviation values for each quality indicator, respectively. 

Next, using Equation 3, the matching weights for every quality attribute were determined. This is displayed in Table 2. The GRG was also 

computed using these weights. 
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Table 1: L18 OA 

Expt No Voltage in volts Duty cycle in % Electrolyte concentration in gm/l MR in µm/s OC in µm SCF 

1 7 50 20 0.179 212 2.3 
2 7 70 30 0.200 160 2 

3 7 90 40 0.227 120 2.16 

4 8 50 20 0.185 180 2.03 
5 8 70 30 0.208 140 2.016 

6 8 90 40 0.250 100 2.28 

7 9 50 30 0.217 110 2.42 
8 9 70 40 0.192 130 1.851 

9 9 90 20 0.179 150 1.758 
10 7 50 40 0.238 90 2.112 

11 7 70 20 0.217 112 2.307 

12 7 90 30 0.200 135 2 
13 8 50 30 0.185 192 2.166 

14 8 70 40 0.179 170 2.031 

15 8 90 20 0.200 144 2.017 
16 9 50 40 0.227 105 2.289 

17 9 70 20 0.208 155 2.254 

18 9 90 30 0.250 90 2.222 

 
Table 2: Normalized Output Performance by CRITIC Method 

Normalized output performance 
Experiment Run MR in µm/s Overcut in µm SCF 

1 0.000 0.181 0.00 

2 0.426 0.634 0.30 
3 0.754 0.393 0.68 

4 0.262 0.589 0.09 

5 0.590 0.610 0.42 
6 0.918 0.211 1.00 

7 0.836 0.000 0.54 

8 0.672 0.860 0.19 
9 0.508 1.000 0.00 

10 1.000 0.465 0.83 

11 0.820 0.171 0.54 

12 0.631 0.634 0.30 

13 0.164 0.384 0.09 

14 0.344 0.588 0.00 
15 0.557 0.609 0.30 

16 0.877 0.198 0.68 

17 0.467 0.251 0.42 
18 1.000 0.299 1.00 

 
Table 3: Correlation Coefficient of Output Performance 

 MR OC SCF 
MR 1 0.8697 -0.5077 
OC 0.8697 1 -0.2307 
SCF -0.5077 -0.2307 1 
 

Table 4: Standard Deviation and Overall Weights of Output Performance 

 MR OC SCF 
STD.DEV. 0.33 0.29 0.26 
Wj 0.327 0.238 0.435 

3. Multi-response optimization using CRITIC +GRA 

The recommended approach is multi-response optimization applying GRA when there are double or extra responses with varying quality 

attributes. Grey analysis is another tool that can be used to compare finite data that appears to be irregular (Kuo et al. 2008). Therefore, the 

following GRA procedures are used in this study to achieve multi-response optimization of EDM parameters. 

3.1. Grey system model 

Deng (1982) proposed the Grey System Model (GSM) based on the random uncertainty of tiny samples (Chan et al. 2007 & Rajesh & Ravi 

2015). Since its beginnings, GST has gradually evolved into an estimation method to address certain complex and multivariate system 

challenges. These kinds of systems are frequently described as having "grey" or ambiguous information. According to control theory, a 

system is referred to as "white" if all relevant information about it is known, and "black" if all relevant information about it is unknown. A 

"grey" system with inadequate and limited information is any system that falls between these bounds.  

The GRA method is used to solve such issues. The GRA technique is used in this study to optimize the process parameters while accounting 

for the correlation between several performance metrics. The GRA for choosing the best machining parameters is presented in detail in the 

next section. Additionally, the best machining parameters are determined and verified while taking into account various performance 

attributes. 

3.2. Pre-processing of data 

Data pre-processing is necessary for gray relational analysis because different data sequences may have different ranges and units. When 

the target's orientations in the sequence differ or the sequence's scatter range is very wide, data pre-processing is also required. Transforming 

the original sequence into a similar sequence is known as data pre-processing. The experimental records are normalized in the range of 0 
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to 1 for this purpose. There are several approaches to data pre-processing accessible for GRA, reliant on the features of the data sequence. 

The steps are listed below. 

1) Determine the process factors and performance traits that need to be assessed. 

2) Ascertain how many levels the process parameters have. 

3) Allocate the process factors to the suitable OA after choosing it. 

4) Based on the orthogonal array's configuration, carry out the experiments. 

5) Normalize the MR.OC, and SCF experimental results. 

6) Compute the gray relational coefficient. 

7) By averaging the GRC, determine the GRG. 

8) Apply statistical ANOVA and the GRG to the study of the experimental outcomes. 

9) Decide which process parameter levels are ideal. 

10) Use the confirmation experiment to confirm the ideal process parameters. 

MR is the main phenomenon in ECM which chooses the machinability of the material under concern. For the "larger-the-better" charac-

teristic like MR, the original sequence can be normalized as follows: 

 

xi
∗(k)=

xi(k)−min xi(k)

max xi(k)−min xi(k)
                                                                                                                                                                                (4) 

 

Where, xi
∗(k)and xi(k) are the order next to the data preprocessing and comparability order respectively, k=1 for MR; i=1, 2, 3…, 18 for 

experiments 1 to 18. 

The OC and SCF are too significant measures of ECM performance. Assortment of best process factors for ECM of SAW-AMMC at the 

development phase and their influence on OC and SCF have up till now to be explained. To get the best cutting performance, the “smaller-

the-better” quality characteristic has been used for lessening together the OC and SCF. When the “smaller-the-better” is a characteristic of 

the unique order, then the unique order should be normalized as below: 

 

xi
∗(k)=

max xi(k)−xi(k)

max xi(k)−min xi(k)
                                                                                                                                                                                (5) 

 

Where, xi
∗(k) and xi(k) are the order next to the data preprocessing and comparability order correspondingly, k = 2 and 3 for OC and SCF; 

i=1, 2, 3…, 18 for experiments 1 to 18 . Table 5 shows the values for normalizing the MR. Table 6-7 shows the values for normalizing the 

OC and SCF. 

 
Table 5: Shows the Values for Normalizing the MR 

Experimental Run xi(k) − min xi(k) max xi(k) − min xi(k) 

1 0.0000 0.0714 
2 0.0214 0.0714 

3 0.0487 0.0714 

4 0.0066 0.0714 
5 0.0298 0.0714 

6 0.0714 0.0714 

7 0.0388 0.0714 
8 0.0137 0.0714 

9 0.0000 0.0714 

10 0.0595 0.0714 
11 0.0388 0.0714 

12 0.0214 0.0714 

13 0.0066 0.0714 
14 0.0000 0.0714 

15 0.0214 0.0714 

16 0.0487 0.0714 
17 0.0298 0.0714 

18 0.0714 0.0714 

 
Table 6: Shows the Values for Normalizing the OC 

Experimental Run max xi(k) − xi(k) max xi(k) − min xi(k) 

1 0.00 122.00 

2 52.00 122.00 
3 92.00 122.00 

4 32.00 122.00 

5 72.00 122.00 
6 112.00 122.00 

7 102.00 122.00 

8 82.00 122.00 
9 62.00 122.00 

10 122.00 122.00 

11 100.00 122.00 
12 77.00 122.00 

13 20.00 122.00 

14 42.00 122.00 
15 68.00 122.00 

16 107.00 122.00 

17 57.00 122.00 
18 122.00 122.00 
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Table 7: Shows the Values for Normalizing the SCF 

Experimental Run max xi(k) − xi(k) max xi(k) − min xi(k) 

1 0.120 0.662 

2 0.420 0.662 
3 0.260 0.662 

4 0.390 0.662 

5 0.404 0.662 
6 0.140 0.662 

7 0.000 0.662 

8 0.569 0.662 
9 0.662 0.662 

10 0.308 0.662 

11 0.113 0.662 
12 0.420 0.662 

13 0.254 0.662 

14 0.389 0.662 
15 0.403 0.662 

16 0.131 0.662 

17 0.166 0.662 
18 0.198 0.662 

 

Entire sequences are listed in Tables 8 and 9 after data preprocessing using Equations 4 and 5. 

The GRG offered in Table 10 is estimated by averaging the GRC and complete calculation of the several objective optimizations resolution 

using Equation 6. 

 

µj =
1

m
∑ ξi(n) m

n=1                                                                                                                                                                                          (6) 

 

Where µj is the GRG of the jth experiment and m is the no. of performance characteristics. 

The multi-response performance index given in Table 11 shows the average value of the GRG for each level. Figure 1 shows the effects 

plot for GRG. The maximum value of GRG specifies the top conceivable level of the process parameters. The estimated maximum GRG 

value designates the nearness to the optimal value. The whole mean of the GRG for the 18 runs is assessed and given in Table 11. The 

optimal machining factors grouping for improved MR and smaller OC and SCF is found to be (9V,90%, and 30gm/l) as given in Table 11.  

 
Table 8: Performance Characteristics After Data Processing 

Expt. Run. MR OC SCF 

1 0.0000 0.0000 0.1813 

2 0.3000 0.4262 0.6344 

3 0.6818 0.7541 0.3927 
4 0.0926 0.2623 0.5891 

5 0.4167 0.5902 0.6103 

6 1.0000 0.9180 0.2115 
7 0.5435 0.8361 0.0000 

8 0.1923 0.6721 0.8595 

9 0.0000 0.5082 1.0000 
10 0.8333 1.0000 0.4653 

11 0.5435 0.8197 0.1707 

12 0.3000 0.6311 0.6344 
13 0.0926 0.1639 0.3837 

14 0.0000 0.3443 0.5876 

15 0.3000 0.5574 0.6088 
16 0.6818 0.8770 0.1979 

17 0.4167 0.4672 0.2508 

18 1.0000 1.0000 0.2991 

 
Table 9: Deviation Sequences 

Expt. Run. MR OC SCF 

1 1.0000 1.0000 0.8187 

2 0.7000 0.5738 0.3656 

3 0.3182 0.2459 0.6073 
4 0.9074 0.7377 0.4109 

5 0.5833 0.4098 0.3897 

6 0.0000 0.0820 0.7885 
7 0.4565 0.1639 1.0000 

8 0.8077 0.3279 0.1405 

9 1.0000 0.4918 0.0000 
10 0.1667 0.0000 0.5347 

11 0.4565 0.1803 0.8293 

12 0.7000 0.3689 0.3656 
13 0.9074 0.8361 0.6163 

14 1.0000 0.6557 0.4124 

15 0.7000 0.4426 0.3912 
16 0.3182 0.1230 0.8021 

17 0.5833 0.5328 0.7492 

18 0.0000 0.0000 0.7009 
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Table 10: Computed Grey Relational Grade 

Exp. No. 
Grey relational coefficient 

GRG 
MR OC SCF 

1 0.3333 0.3333 0.3792 0.1178 

2 0.4167 0.4656 0.5777 0.1661 

3 0.6111 0.6703 0.4516 0.1853 
4 0.3553 0.4040 0.5489 0.1504 

5 0.4615 0.5495 0.5620 0.1754 

6 1.0000 0.8592 0.3880 0.2334 
7 0.5227 0.7531 0.3333 0.1651 

8 0.3824 0.6040 0.7807 0.2028 
9 0.3333 0.5041 1.0000 0.2213 

10 0.7500 1.0000 0.4832 0.2311 

11 0.5227 0.7349 0.3761 0.1698 
12 0.4167 0.5755 0.5777 0.1748 

13 0.3553 0.3742 0.4479 0.1334 

14 0.3333 0.4326 0.5480 0.1501 
15 0.4167 0.5304 0.5610 0.1688 

16 0.6111 0.8026 0.3840 0.1860 

17 0.4615 0.4841 0.4002 0.1468 
18 1.0000 1.0000 0.4164 0.2487 

4. Effect of process variables 

Figure 1 displays the mean effect plot for GRG and rise in voltage level displays the declining output performance. The rise in duty cycle 

decrease the output performance and further rise in duty cycle improve the output responses. The rise in electrolyte concentration improves 

the output performance. 

 

 
Fig. 1: Mean Effect Plot for GRG. 

 
Table 11: Multi Response Performance Index 

Notations Level 1 Level 2 Level 3 Main effect (Maximum -Minimum) 

MR 0.1764 0.1969 0.0969 0.1000 
OC 0.1742 0.1685 0.1981 0.0296 

SCF 0.1625 0.1772 0.1643 0.0148 

µj=0.1683 

4.1. ANOVA 

To examine how a process parameter affects a performance attribute, an ANOVA is performed [18]. The total of the squared deviations is 

used to calculate the impact of process parameters. It forecasts the critical process variable that affects output quality. One can compute 

the sum of the squared deviations from the total mean of the GRG. 

 

SSd = ∑ (µj−
p
j=1 µi)

2                                                                                                                                                                                       (7) 

 

Where µj is the mean of the GRG for the jth experiment and p is the number of experiments in the OA. The mean square of a factor is 

obtained by dividing the computed sum of squares by the degrees of freedom. Using Equation 8, the percentage contribution (φ) of each 

design parameter is found. 

 

                                                                                                                                                                                                      (8) 

 

Furthermore, the Fisher’s F test is too did to form machining factors that effect the performance characteristic. ANOVA for GRG is 

presented in Table 12. As per the ANOVA table duty cycle and electrolyte concentration display an elevated percentage contribution, hence 

duty cycle and electrolyte concentration are leading parameters that influence the MR, OC, and SCF. 
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Table 12: ANOVA Table 

Symbol Factors Degree of freedom Sum of squares Mean squares F ratio Percentage contribution (φ) 

A Voltage 2 0.0023 0.0012 1.331 0.52 
B  Duty cycle 2 0.0062 0.0031 3.519 56.80 

C Electrolyte Concentration 2 0.0038 0.0019 2.183 20.57 

E Error  11 0.0097 0.0009  22.12 
 Total 17 0.0221 0.0013  100 

5. Confirmation test 

A confirmation test was run to demonstrate how the performance characteristics had improved[19]. Using the best level of machining 

parameters, the computed GRG(η) can be found as 

 

1

( )
q

m i m

i

   
=

= + −
                                                                                                                                                                                         (9) 

 

Where ηi is the GRG mean at the ideal level, q is the no. of important parameters, and ηm is the GRG's overall mean. Using Equation (9), 

the expected MR, OC, SCF, and GRG for the optimal machining factors are determined and shown in Table 13. The comparison between 

the GRG and empirically obtained values is also displayed in Table 13. The ECM method has performed better overall since the GRG has 

improved by 0.1309 from the starting point. 

 
Table 13: Confirmation Test 

 Primary levels of machining parameters 
Optimal combination levels of machining parameters 

Prediction Experiment 

 A1B1C1 A3B3C2 A3B3C2 

Observed MR (mm/min) value 0.000 - 1.000 

Observed OC(mm) 
value 

0.000 
 

- 1.000 

Observed SCF 

value 

0.181 

 
 0.2991 

Grey relational grade 0.1178 0.3663 0.2487 

6. SEM analysis of hole 

The hole analysis is performed using the SEM Figure 2 machined at ideal mixture of process variables. It is evident that the circumference 

of the hole is filled with delaminated surfaces. The hole is found to be circular and stray current effect is noticed on the surfaces. Figure 3 

shows the over etched surfaces near the hole area machined at 7V,90% and 40gm/l electrolyte concentration. 

 

 
Fig. 2: SEM of the Hole Surface with Stray Current Effect. 
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Fig. 3: Microhole with Delaminated Surfaces. 

7. Conclusion 

A hybrid CRITIC-GRA method looked at the best possible parameter combinations for the ECM drilling process. The input process pa-

rameters considered were voltage (V), duty cycle, and electrolyte concentration. Several trials were conducted in series using the L18 

Taguchi orthogonal array (OA), considering all elements at three levels. Next, for each experimental run, the following values were deter-

mined: MR, OC, and SCF. Moreover, the ECM drilling process was optimized by CRITIC analysis and grey relational analysis. Grey 

relational analysis was used in conjunction with the CRITIC analysis to establish the relative importance of each performance attribute. 

CRITIC evaluates the standard deviations as 0.33, 0.29, and 0.29 for MR, OC, and SCF respectively. The weights were calculated as 0.327, 

0.238, and 0.435 for MR, OC and SCF respectively. It was discovered that A3B3C2voltage at level 3 (9V), duty cycle at level 3 (90%), 

and electrolyte concentration at level 2 (30gm/l), were the ideal combination for the ECM drilling process. Duty cycle and electrolyte 

concentration were shown to be the most important parameters influencing quality features based on the ANOVA results. The confirmation 

results have improved the GRG by 0.1309 from the initial value. 
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