Analysis of ECM performance using critic GRA ‎method

  • Authors

    • Ravi V.P Government Polytechnic College, Palacode, Dharmapuri-636808, India
    • Raja M Government of Engineering, Salem-636011
    • Balusamy T Government of Engineering, Salem-636011
    • Anbarasan P St.Joseph's Institute of Technology, Old Mamallapuram Road,Chennai-600119
    • Sankaran R.A Salem College of Engineering and Technology, Salem-636111, India

    Received date: February 19, 2025

    Accepted date: March 6, 2025

    Published date: March 21, 2025

    https://doi.org/10.14419/rgh5jx90
  • Standard Deviations; ECM, Metal Matrix Composites; Duty Cycle; Voltage; Surface Corrosion Factor.
  • Abstract

    A hybrid CRITIC-GRA method is adopted to determine the best possible parameter combinations for the ECM drilling process. The input process parameters considered were voltage, duty cycle, and electrolyte concentration. The performance measures ‎considered are machining rate (MR), overcut (OC), and surface corrosion factor (SCF). CRITIC evaluates the standard deviations as 0.33, ‎‎0.29, and 0.29 for MR, OC, and SCF respectively. The weights were calculated as 0.327, 0.238, and 0.435 for MR, OC, and SCF respectively. It ‎was evaluated that voltage at level 3 (9V), duty cycle at level 3 (90%), and electrolyte concentration at level 2 (30gm/l), were the ideal combination for the ECM drilling process. Duty cycle and electrolyte concentration were shown to be the most important parameters influencing ‎quality features based on the ANOVA results. The confirmation results have improved the GRG by 0.1309 from the initial value‎.

  • References

    1. Siva, M., ArunKumar, N., Ganesh, M., & Sathishkumar, N. (2024). Optimization of process parameters in micro electrochemical machining using TOPSIS technique with Analytical Hierarchy Process (AHP). Engineering Research Express, 6(3), 035534. https://doi.org/10.1088/2631-8695/ad63f7.
    2. Waghmare, C., Patil, S., & Chaudhari, P. (2024). Application of Taguchi Method, ANOVA Analysis, and TOPSIS Technique in Optimization of Process Parameters for Surface Roughness and Material Removal Rate in Electrochemical Machining of Al-SiC MMCs. Indian Journal of Sci-ence and Technology, 17(16), 1633-1642. https://doi.org/10.17485/IJST/v17i16.751.
    3. Maniraj, S., & Thanigaivelan, R. (2019). Optimization of electrochemical micromachining process parameters for machining of AMCs with differ-ent% compositions of GGBS using Taguchi and TOPSIS methods. Transactions of the Indian Institute of Metals, 72, 3057-3066. https://doi.org/10.1007/s12666-019-01772-3.
    4. Annamalai, P., & Dhavamani, C. (2023). Experimental investigation on machining of recycled aluminum alloy metal matrix composite in ECMM. Transactions of the Indian Institute of Metals, 76(7), 1831-1839. https://doi.org/10.1007/s12666-023-02880-x.
    5. Preethi, V., Kavimani, V., & Gopal, P. M. (2024). Electrochemical micro-machining of hybrid graphene/silicon nitride-reinforced magnesium com-posite through integrated Entropy-COPRAS approach. Multiscale and Multidisciplinary Modeling, Experiments and Design, 7(2), 823-835. https://doi.org/10.1007/s41939-023-00258-6.
    6. Geethapriyan, T., Muthuramalingam, T., & Kalaichelvan, K. (2019). Influence of process parameters on machinability of Inconel 718 by electro-chemical micromachining process using TOPSIS technique. Arabian journal for science and engineering, 44, 7945-7955. https://doi.org/10.1007/s13369-019-03978-5.
    7. Pradeep, N., Shanmuga Sundaram, K., & Pradeep Kumar, M. (2019). Multi-response optimization of electrochemical micromachining parameters for SS304 using polymer graphite electrode with NaNO 3 electrolyte based on TOPSIS technique. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 323. https://doi.org/10.1007/s40430-019-1823-7.
    8. Saranya, K., Haribabu, K., Venkatesh, T., Saravanan, K. G., Maranan, R., & Rajan, N. (2024). Electrochemical machining parameter optimization and prediction of performance using artificial neural network. International Journal on Interactive Design and Manufacturing (IJIDeM), 18,5015-5025. https://doi.org/10.1007/s12008-024-01811-4.
    9. Natarajan, R., Kanagaraj, S., Palaniappan, T., & Dhanaskodi, D. (2025). Machinability studies on metal additive manufactured 316L stainless steel using electrochemical machine: Original scientific paper. Journal of Electrochemical Science and Engineering, 2567. https://doi.org/10.5599/jese.2567.
    10. Thangamani, G., Thangaraj, M., Moiduddin, K., Alkhalefah, H., Mahalingam, S., & Karmiris-Obratański, P. (2022). Multiobjective optimization of heat-treated copper tool electrode on EMM process using artificial bee colony (ABC) algorithm. Materials, 15(14), 4831. https://doi.org/10.3390/ma15144831.
    11. Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The critic meth-od. Computers & Operations Research, 22(7), 763-770. https://doi.org/10.1016/0305-0548(94)00059-H.
    12. Alinezhad, A., & Khalili, J. (2019). New methods and applications in multiple attribute decision making (MADM) (Vol. 277, pp. 199-203). Cham: Springer. https://doi.org/10.1007/978-3-030-15009-9_26.
    13. Krishnan, A. R., Kasim, M. M., Hamid, R., & Ghazali, M. F. (2021). A modified CRITIC method to estimate the objective weights of decision crite-ria. Symmetry, 13(6), 973. https://doi.org/10.3390/sym13060973.
    14. Kuo, Y., Yang, T., & Huang, G. W. (2008). The use of grey relational analysis in solving multiple attribute decision-making problems. Computers & industrial engineering, 55(1), 80-93. https://doi.org/10.1016/j.cie.2007.12.002.
    15. Deng, JL 1982, ‘Control problems of grey system’, System & Control Letters, vol. 1, pp. 288-294. https://doi.org/10.1016/S0167-6911(82)80025-X.
    16. Chan, JW & Tong, TK 2007, Multi-criteria material selections and end-of-life product strategy: Grey relational analysis approach’, Materials & Design, vol. 28, no. 5, pp. 1539-1546. https://doi.org/10.1016/j.matdes.2006.02.016.
    17. Rajesh, R & Ravi, V 2015, Supplier selection in resilient supply chains: a grey relational analysis approach’, Journal of cleaner production, vol. 86, pp. 343-359. https://doi.org/10.1016/j.jclepro.2014.08.054.
    18. Venugopal, P., Saravanan, K. G., & Thanigaivelan, R. (2023). Performance analysis of edm on grey cast iron using rsm and topsis method. Appl. Eng. Lett, 8, 10-16. https://doi.org/10.18485/aeletters.2023.8.1.2.
    19. Venugopal, P., Arul, T. G., & Thanigaivelan, R. (2022). Performance optimization of a PTFE-coated electrode in electrochemical micromachin-ing. Ionics, 28(10), 4745-4753. https://doi.org/10.1007/s11581-022-04686-1.
  • Downloads

  • How to Cite

    V.P, R., M, R., T, B., P, A., & R.A, . S. (2025). Analysis of ECM performance using critic GRA ‎method. International Journal of Basic and Applied Sciences, 14(1), 23-31. https://doi.org/10.14419/rgh5jx90

    Received date: February 19, 2025

    Accepted date: March 6, 2025

    Published date: March 21, 2025