Predictive modeling of mechanical behavior in waste ceramic concrete ‎using machine learning techniques

  • Authors

    • Kamal Upreti Department of Computer Science, CHRIST (Deemed to be University), Delhi-NCR ‎Ghaziabad, Uttar Pradesh, India
    • Adesh Kumar Pandey Department of Information Technology, KIET Group of Institutions, Ghaziabad, India
    • Virendra Singh Kushwah School of Computing Science & Engineering, VIT Bhopal University, Highway, Kothrikalan, ‎Sehore, Madhya Pradesh, India
    • Pravin R. Kshirsagar Department of Electronics & Telecommunication Engineering, J D College of Engineering ‎& Management, Nagpur, Maharashtra, India
    • Kamal Kant Sharma Department of Information Technology, KIET Group of Institutions, Ghaziabad, India
    • Jagendra Singh School of Computer Science Engineering & Technology, Bennett University, Greater Noida, India
    • Jyoti Parashar Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi,
    • Rituraj Jain Department of Information Technology, Marwadi University, Rajkot, Gujarat, India
    https://doi.org/10.14419/ywwvvd04

    Received date: March 30, 2025

    Accepted date: April 26, 2025

    Published date: April 30, 2025

  • Machine Learning; Waste Ceramic Concrete; Artificial Neural Network; LightGBM; Construction ‎Industry; Environmental Sustainability
  • Abstract

    This study identifies the critical demand for a certain approach that aims to predict and ascertain ‎the mechanical behavior of con-crete admixed with waste ceramic, a method to overcome and ‎mitigate the related environmental challenges as it pertains to the construction field. Concrete ‎modification with ceramic wastes has received significant attention due to its potential ‎improvement in sustainability. The developed predictive models on waste ceramic concrete ‎‎(WCC) involved the use of advanced machine learning techniques such as Artificial Neural ‎Network (ANN) and Light Gradient Boosting Machine (LightGBM). Experimental datasets ‎were formulated based on 5% and 20% variability of ceramic waste percentages as input ‎variables for training and testing data for validation of the proposed model. In each case, iterative ‎training improved model performance, with the ANN showing moderate predictability (R² = ‎‎0.70 and 0.67) and LightGBM demonstrating stronger accuracy. Predictive values ranged ‎between 1.02 MPa and 0.12 MPa for compressive and splitting tensile strengths and had R² ‎values of 0.70 and 0.67 for the ANN model, respectively. The established findings will lead to ‎a dependable framework for assessing and improving the performance of ceramic waste-modified concrete. In this regard, these findings have reinforced the potential of machine ‎learning in developing sustainable construction practices. This paper is of value to ‎engineers and decision-makers within the construction industry, providing an informed choice ‎towards environmental sustainability and better risk management‎.

  • References

    1. Madani, H., Kooshafar, M., & Emadi, M. (2020). Compressive strength prediction of Nanosilica-Incorporated cement mixtures using adaptive Neu-ro-Fuzzy inference system and artificial neural network models. Practice Periodical on Structural Design and Construction, 25(3). https://doi.org/10.1061/(ASCE)SC.1943-5576.0000499.
    2. Behnood, A., & Golafshani, E. M. (2020). Machine learning study of the mechanical properties of concretes containing waste foundry sand. Con-struction and Building Materials, 243, 118152. https://doi.org/10.1016/j.conbuildmat.2020.118152.
    3. Feng, D., Liu, Z., Wang, X., Chen, Y., Chang, J., Wei, D., & Jiang, Z. (2019). Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach. Construction and Building Materials, 230, 117000. https://doi.org/10.1016/j.conbuildmat.2019.117000.
    4. Alyousef, R., Nassar, R., Khan, M., Arif, K., Fawad, M., Hassan, A. M., & Ghamry, N. A. (2023). Forecasting the strength characteristics of con-crete incorporating waste foundry sand using advance machine algorithms including deep learning. Case Studies in Construction Materials, 19, e02459. https://doi.org/10.1016/j.cscm.2023.e02459.
    5. Najm, H. M., Nanayakkara, O., Ahmad, M., & Sabri, M. M. S. (2022). Mechanical properties, crack width, and propagation of waste ceramic con-crete subjected to elevated temperatures: a comprehensive study. Materials, 15(7), 2371. https://doi.org/10.3390/ma15072371.
    6. Ray, S., Haque, M., Rahman, M. M., Sakib, M. N., & Rakib, K. A. (2021). Experimental investigation and SVM-based prediction of compressive and splitting tensile strength of ceramic waste aggregate concrete. Journal of King Saud University - Engineering Sciences, 36(2), 112–121. https://doi.org/10.1016/j.jksues.2021.08.010.
    7. Ray, S., Rahman, M. M., Haque, M., Hasan, M. W., & Alam, M. M. (2021). Performance evaluation of SVM and GBM in predicting compressive and splitting tensile strength of concrete prepared with ceramic waste and nylon fiber. Journal of King Saud University - Engineering Sciences, 35(2), 92–100. https://doi.org/10.1016/j.jksues.2021.02.009.
    8. Keshavarz, Z., & Mostofinejad, D. (2019). Steel chip and porcelain ceramic wastes used as replacements for coarse aggregates in concrete. Journal of Cleaner Production, 230, 339–351. https://doi.org/10.1016/j.jclepro.2019.05.010.
    9. Lei, S., Cao, H., & Kang, J. (2020). Concrete surface crack recognition in complex scenario based on deep learning. Journal of Highway and Trans-portation Research and Development (English Edition), 14(4), 48–58. https://doi.org/10.1061/JHTRCQ.0000754.
    10. Awolusi, T., Oke, O., Akinkurolere, O., & Sojobi, A. (2018). Application of response surface methodology: Predicting and optimizing the properties of concrete containing steel fibre extracted from waste tires with limestone powder as filler. Case Studies in Construction Materials, 10, e00212. https://doi.org/10.1016/j.cscm.2018.e00212.
    11. Zoorob, S., & Suparma, L. (2000). Laboratory design and investigation of the properties of continuously graded Asphaltic concrete containing recy-cled plastics aggregate replacement (Plastiphalt). Cement and Concrete Composites, 22(4), 233–242. https://doi.org/10.1016/S0958-9465(00)00026-3.
    12. Brekailo, F., Pereira, E., Pereira, E., Farias, M. M., & Medeiros-Junior, R. A. (2021). Red ceramic and concrete waste as replacement of portland ce-ment: Microstructure aspect of eco-mortar in external sulfate attack. Cleaner Materials, 3, 100034. https://doi.org/10.1016/j.clema.2021.100034.
    13. Cladera, A., Marí, A., & Ribas, C. (2021). Mechanical model for the shear strength prediction of corrosion-damaged reinforced concrete slender and non-slender beams. Engineering Structures, 247, 113163. https://doi.org/10.1016/j.engstruct.2021.113163.
    14. Ikumi, T., Galeote, E., Pujadas, P., De La Fuente, A., & López-Carreño, R. (2021). Neural network-aided prediction of post-cracking tensile strength of fibre-reinforced concrete. Computers & Structures, 256, 106640. https://doi.org/10.1016/j.compstruc.2021.106640.
    15. Iqbal, M., Elbaz, K., Zhang, D., Hu, L., & Jalal, F. E. (2022). Prediction of residual tensile strength of glass fiber reinforced polymer bars in harsh alkaline concrete environment using fuzzy metaheuristic models. Journal of Ocean Engineering and Science, 8(5), 546–558. https://doi.org/10.1016/j.joes.2022.03.011.
    16. Zheng, Z., Tian, C., Wei, X., & Zeng, C. (2022). Numerical investigation and ANN-based prediction on compressive strength and size effect using the concrete mesoscale concretization model. Case Studies in Construction Materials, 16, e01056. https://doi.org/10.1016/j.cscm.2022.e01056.
    17. Zegardło, B. (2022). Heat-resistant concretes containing waste carbon fibers from the sailing industry and recycled ceramic aggregates. Case Studies in Construction Materials, 16, e01084. https://doi.org/10.1016/j.cscm.2022.e01084.
    18. Younis, M., Amin, M., & Tahwia, A. M. (2022). Durability and mechanical characteristics of sustainable self-curing concrete utilizing crushed ceram-ic and brick wastes. Case Studies in Construction Materials, 17, e01251. https://doi.org/10.1016/j.cscm.2022.e01251.
    19. Indira, D. N. V. S. L. S., Ganiya, R. K., Babu, P. A., Xavier, A. J., Kavisankar, L., Hemalatha, S., Senthilkumar, V., Kavitha, T., Rajaram, A., An-nam, K., & Yeshitla, A. (2022). Improved Artificial Neural Network with State Order Dataset Estimation for Brain Cancer Cell Diagnosis. BioMed Research International, 2022, 1–10. https://doi.org/10.1155/2022/7799812.
    20. Najafzadeh, M. (2015). Neuro-fuzzy GMDH systems based evolutionary algorithms to predict scour pile groups in clear water conditions. Ocean En-gineering, 99, 85–94. https://doi.org/10.1016/j.oceaneng.2015.01.014.
    21. Najafzadeh, M., Barani, G., & Azamathulla, H. M. (2013). GMDH to predict scour depth around a pier in cohesive soils. Applied Ocean Research, 40, 35–41. https://doi.org/10.1016/j.apor.2012.12.004.
    22. Saberi-Movahed, F., Najafzadeh, M., & Mehrpooya, A. (2020). Receiving more accurate predictions for longitudinal dispersion coefficients in water pipelines: Training Group method of data handling using extreme Learning machine conceptions. Water Resources Management, 34(2), 529–561. https://doi.org/10.1007/s11269-019-02463-w.
    23. Najafzadeh, M., Saberi-Movahed, F., & Sarkamaryan, S. (2017). NF-GMDH-Based self-organized systems to predict bridge pier scour depth under debris flow effects. Marine Georesources and Geotechnology, 36(5), 589–602. https://doi.org/10.1080/1064119X.2017.1355944.
    24. Jude, A. B., Singh, D., Islam, S., Jameel, M., Srivastava, S., Prabha, B., & Kshirsagar, P. R. (2021): An Artificial intelligence based predictive ap-proach for smart waste management. Wireless Personal Communications, 127(S1), 15–16. https://doi.org/10.1007/s11277-021-08803-7.
    25. Kshirsagar, P. R., Upreti, K., Kushwah, V. S., Hundekari, S., Jain, D., Pandey, A. K., & Parashar, J. (2024). Prediction and modeling of mechanical properties of concrete modified with ceramic waste using artificial neural network and regression model. Signal Image and Video Processing, 18(S1), 183–197. https://doi.org/10.1007/s11760-024-03142-z.
    26. Upreti, K., Arora, S., Sharma, A. K., Pandey, A. K., Sharma, K. K., & Dayal, M. (2023). Wave Height Forecasting over Ocean of Things Based on Machine Learning Techniques: An application for ocean Renewable Energy generation. IEEE Journal of Oceanic Engineering, 49(2), 430–445. https://doi.org/10.1109/JOE.2023.3314090.
    27. Kumar, N., Upreti, K., Jafri, S., Arora, I., Bhardwaj, R., Phogat, M., Srivastava, S., & Akorli, F. K. (2022). Sustainable Computing: a determinant of industry 4.0 for sustainable information Society. Journal of Nanomaterials, 2022(1). https://doi.org/10.1155/2022/9335963.
    28. Verma, M., Upreti, K., Vats, P., Singh, S., Singh, P., Dev, N., Mishra, D. K., & Tiwari, B. (2022). Experimental analysis of Geopolymer Concrete: A Sustainable and Economic Concrete using the Cost Estimation model. Advances in Materials Science and Engineering, 2022, 1–16. https://doi.org/10.1155/2022/7488254.
    29. Upreti, K., Verma, M., Agrawal, M., Garg, J., Kaushik, R., Agrawal, C., Singh, D., & Narayanasamy, R. (2022). Prediction of mechanical strength by using an artificial neural network and random forest algorithm. Journal of Nanomaterials, 2022(1). https://doi.org/10.1155/2022/7791582.
    30. Bhatnagar, S., Dayal, M., Singh, D., Upreti, S., Upreti, K., & Kumar, J. (2023). Block-Hash Signature (BHS) for Transaction Validation in Smart Contracts for Security and Privacy using Blockchain. Journal of Mobile Multimedia. https://doi.org/10.13052/jmm1550-4646.1941.
    31. Aggarwal, D., Mittal, S., Upreti, K., & Nayak, P. (2024). Reward based garbage monitoring and collection system using sensors. Journal of Mobile Multimedia, 391–410. https://doi.org/10.13052/jmm1550-4646.2026.
    32. Kshirsagar, P. R., Upreti, K., Kushwah, V. S., Hundekari, S., Jain, D., Pandey, A. K., & Parashar, J. (2024). Prediction and modeling of mechanical properties of concrete modified with ceramic waste using artificial neural network and regression model. Signal, Image and Video Processing, 18(Suppl 1), 183-197. https://doi.org/10.1007/s11760-024-03142-z.
    33. Abbas, M. M. (2025). Recycling waste materials in construction: Mechanical properties and predictive modeling of Waste-Derived cement substitutes. Waste Management Bulletin. https://doi.org/10.1016/j.wmb.2025.01.004.
    34. Cakiroglu, C., Batool, F., Sangi, A. J., Fatima, B., & Nehdi, M. L. (2025). Explainable machine learning predictive model for mechanical strength of recycled ceramic tile-based concrete. Materials Today Communications, 44, 112139. https://doi.org/10.1016/j.mtcomm.2025.112139
  • Downloads

  • How to Cite

    Upreti, K., Pandey, A. K. ., Kushwah, V. S. ., Kshirsagar, P. R. ., Sharma, K. K. ., Singh, J. ., Parashar, J. ., & Jain, R. . (2025). Predictive modeling of mechanical behavior in waste ceramic concrete ‎using machine learning techniques. International Journal of Basic and Applied Sciences, 14(1), 124-135. https://doi.org/10.14419/ywwvvd04