Comparative review of alkaline and acidic etchants in ‎chemical milling

  • Authors

    • Aditya Sandeep More UG Student, Final Year B. Tech.: Manufacturing Science and Engineering, Department of Manufacturing Engineering and Industri-al ‎Management, COEP Technological University (COEP Tech), Chhatrapati Shivajinagar, Pune: 411005, Maharashtra State, India
    • Mayuresh Suresh Desai Research Scholar, Department of Manufacturing Engineering and Industrial Management, ‎COEP Technological University (COEP Tech), Chhatrapati Shivajinagar, Pune: 411005, Maharashtra State, India and Senior Manager - Research and Development, Enpro Industries Private Limited, Markal, Pune: 412105, Maharashtra State, India
    • Sudhir Madhav Patil Associate Professor, Department of Manufacturing Engineering and Industrial Management, ‎COEP Technological University (COEP Tech), Chhatrapati Shivajinagar, Pune: 411005, Maharashtra State, India
    https://doi.org/10.14419/hnceca27

    Received date: April 15, 2025

    Accepted date: May 8, 2025

    Published date: May 11, 2025

  • Acidic Etchants; Alkaline Etchants; Chemical Milling; Etchants; Etching Solution
  • Abstract

    Chemical milling is a widely used material removal process in aerospace, electronics, and automotive manufacturing industries. The ‎selection of an appropriate etchant plays a crucial role in determining process efficiency, surface quality, and overall sustainability. This ‎review examines the comparative performance of alkaline and acidic etchants based on key parameters such as etch rate, precision, material ‎compatibility, waste management, and economic feasibility. The primary objective of this study is to analyze the strengths and limitations of ‎both etchant types to provide insights into optimizing chemical milling processes. A structured review methodology is employed, evaluating ‎existing literature and industrial practices to assess the influence of etchant composition on process outcomes. The analysis highlights that ‎alkaline etchants, such as sodium hydroxide and potassium hydroxide, offer high etch rates but often result in rougher surfaces and greater ‎undercut formation. In contrast, acidic etchants, including ferric chloride and nitric acid, provide superior surface finish, better undercut ‎control, and enhanced precision, making them more suitable for applications requiring fine feature definition. The study also identifies key ‎challenges in chemical milling, such as bath longevity, environmental impact, and waste disposal concerns. Future research directions ‎include the development of eco-friendly etchants, automation-driven process optimization, and hybrid etching techniques to improve efficiency ‎while minimizing environmental impact. The findings of this review contribute to a deeper understanding of chemical milling processes, ‎aiding in the selection of suitable etchants for enhanced precision, cost-effectiveness, and sustainability‎.

  • References

    1. El-Hofy, H. (2005). Advanced machining processes: Nontraditional and hybrid machining processes. McGraw-Hill.
    2. Bhattacharyya, B., & Doloi, B. (2020). Machining processes utilizing chemical and electrochemical energy. In Modern Machining Technology (pp. 365–460). Elsevier. https://doi.org/10.1016/B978-0-12-812894-7.00005-0.
    3. Ikumapayi, O. M., et al. (2023). Non-traditional machining techniques in manufacturing industries – An overview. E3S Web of Conferences, 430, 01213. https://doi.org/10.1051/e3sconf/202343001213.
    4. Cakir, O., Yardimeden, A., & Ozben, T. (2007). Chemical machining. Archives of Materials Science and Engineering, 28.
    5. Rohith, R., et al. (2022). Chemical machining process – A review. Proceedings on Engineering Sciences, 4(1), 33–36. https://doi.org/10.24874/PES04.01.005.
    6. Kumar, A., Apoorva, S., Ashwin Kumar, S. B., Sumanth, H. U., & Nanjundeswaraswamy, T. S. (2019). Chemical blanking and chemical milling process: An outline. International Journal of Engineering Research and Applications (IJERA), 9(10), 83–86.
    7. Yu, M., et al. (2016). Examining regeneration technologies for etching solutions: A critical analysis of the characteristics and potentials. Journal of Cleaner Production, 113, 973–980. https://doi.org/10.1016/j.jclepro.2015.10.131.
    8. Kape, J. M. (1970). Chemical etching of aluminium in caustic soda based solutions. Transactions of the IMF, 48(1), 43–50. https://doi.org/10.1080/00202967.1970.11870128.
    9. Wang, J., et al. (2022). Research status and prospect of laser scribing process and equipment for chemical milling parts in aviation and aerospace. Micromachines, 13(2), 323. https://doi.org/10.3390/mi13020323.
    10. Çakır, O. (2019). Etchants for chemical machining of aluminium and its alloys. Acta Physica Polonica A, 135(4), 586–587. https://doi.org/10.12693/APhysPolA.135.586.
    11. Çakır, O. (2007). Study of etch rate and surface roughness in chemical etching of stainless steel. Key Engineering Materials, 364–366, 837–842. https://doi.org/10.4028/www.scientific.net/KEM.364-366.837.
    12. Çakır, O. (2007). Review of etchants for copper and its alloys in wet etching processes. Key Engineering Materials, 364–366, 460–465. https://doi.org/10.4028/www.scientific.net/KEM.364-366.460.
    13. Patil, O., & Chanmanwar, R. (2018). Analysis and optimization of photochemical machining on copper. Procedia Computer Science, 133, 464–470. https://doi.org/10.1016/j.procs.2018.07.057.
    14. Saraf, A. R., & Sadaiah, M. (2013). Application of artificial intelligence for the prediction of undercut in photochemical machining. International Journal of Machining and Machinability of Materials, 6(2), 183. https://doi.org/10.1504/IJMMS.2013.053829.
    15. Saraf, A. R., & Sadaiah, M. (2017). Magnetic field-assisted photochemical machining (MFAPCM) of SS316L. Materials and Manufacturing Pro-cesses, 32(3), 327–332. https://doi.org/10.1080/10426914.2016.1198014.
    16. Mathew, A., Kishore, S. R., Tomy, A. T., Sugavaneswaran, M., Scholz, S. G., Elkaseer, A., Wilson, V. H., & John Rajan, A. (2023). Vapour polish-ing of fused deposition modelling (Fdm) parts: A critical review of different techniques, and subsequent surface finish and mechanical properties of the post-processed 3D-printed parts. Progress in Additive Manufacturing, 8(6), 1161–1178. https://doi.org/10.1007/s40964-022-00391-7.
    17. Broekaert, T. P. E., & Fonstad, C. G. (1992). Novel, organic acid‐based etchants for ingaalas / inp heterostructure devices with alas etch‐stop layers. Journal of The Electrochemical Society, 139(8), 2306–2309. https://doi.org/10.1149/1.2221220.
    18. DeSalvo, G. C., Tseng, W. F., & Comas, J. (1992). Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs , Al0.3Ga0.7As , In0.2Ga0.8As , In0.53Ga0.47As , In0.52Al0.48As , and InP. Journal of The Electrochemical Society, 139(3), 831–835. https://doi.org/10.1149/1.2069311.
    19. Jung, K., & Lee, J. (2024). A review of the mechanism and optimization of metal-assisted chemical etching and applications in semiconductors. Mi-cro and Nano Systems Letters, 12(1), 27. https://doi.org/10.1186/s40486-024-00217-x.
    20. Xu, H., et al. (2006). Chemical etching solutions for titanium and titanium alloys. CN1743508A. Retrieved from https://patents.google.com/patent/CN1743508A/en
    21. Prasad, A. R., & Prakash, S. (2023). A review on anodizing process of aluminum and non-aluminium alloys. [Unpublished manuscript].
    22. Beyer, S., & Lukes, R. (1974). Regeneration of ferric chloride copper etching solutions. US Patent 3794571A. https://worldwide.espacenet.com/patent/search/family/022498424/publication/US3794571A.
    23. Patil, D. H., Thorat, S. B., Khake, R. A., & Mudigonda, S. (2018). Comparative study of FeCl₃ and CuCl₂ on geometrical features using photo-chemical machining of Monel 400. Procedia CIRP, 68, 144–149. https://doi.org/10.1016/j.procir.2017.12.084.
    24. Choi, K., Kim, S., Lee, J., Chu, B., & Jeong, D. (2024). Eco‐friendly glass wet etching for MEMS application: A review. Journal of the American Ceramic Society, 107 (10), 6497–6515. https://doi.org/10.1111/jace.19961.
    25. Dumbre, J., Tong, Z., Dong, D., Qiu, D., & Easton, M. (2024). Buffered oxide etch: A safer, more effective etchant for additively manufactured Ti-alloys. Metallography, Microstructure, and Analysis, 13(5), 871–879. https://doi.org/10.1007/s13632-024-01094-x.
    26. Zubel, I., Barycka, I., Kotowska, K., & Kramkowska, M. (2001). Silicon anisotropic etching in alkaline solutions IV. Sensors and Actuators A: Physical, 87(3), 163–171. https://doi.org/10.1016/S0924-4247(00)00481-7.
    27. Solvay Solutions UK Ltd. (1981). Etching composition. GB Patent No. GB2067958A. https://worldwide.espacenet.com/patent/search/family/026274270/publication/GB2067958A.
    28. Sesana, R., Spriano, S., Ferraris, S., & Matteis, P. (2019). Fatigue resistance of light alloy sheets undergoing eco-friendly chemical milling: Metal-lurgical and chemical aspects. Procedia Structural Integrity, 19, 362–369. https://doi.org/10.1016/j.prostr.2019.12.039.
    29. Murski, K. J. (1982). Ammoniacal alkaline cupric etchant solution for and method of reducing etchant undercut (US Patent No. 4319955A). https://worldwide.espacenet.com/patent/search/family/022757083/publication/US4319955A.
    30. Chiang, J. (1974). Process of etching copper circuits with alkaline persulfate and compositions therefore (US Patent No. 3837945A). https://worldwide.espacenet.com/patent/search/family/022891621/publication/US3837945A.
    31. Taylor, E., & Sun, J. (2005). Electrochemical etching of circuitry for high density interconnect electronic modules (US Patent No. US20050145506A1). https://worldwide.espacenet.com/patent/search/family/034710805/publication/US2005145506A1.
    32. Stephen, A. (2011). Mechanisms and applications of laser chemical machining. Physics Procedia, 12, 261–267. https://doi.org/10.1016/j.phpro.2011.03.132.
    33. Leone, C., Lopresto, V., Memola Capece Minutolo, F., De Iorio, I., & Rinaldi, N. (2010). Laser ablation of maskant used in chemical milling pro-cess for aerospace applications. In T. Dreischuh, P. A. Atanasov, & N. V. Sabotinov (Eds.), Proceedings of SPIE, 77511M–77511M–9. https://doi.org/10.1117/12.876386.
    34. Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical Reviews, 114(21), 11060–11082. https://doi.org/10.1021/cr300162p.
    35. Lomba, L., García, C. B., Ribate, M. P., Giner, B., & Zuriaga, E. (2021). Applications of deep eutectic solvents related to health, synthesis, and ex-traction of natural based chemicals. Applied Sciences, 11(21), 10156. https://doi.org/10.3390/app112110156.
    36. Kityk, A., Pavlik, V., & Hnatko, M. (2023). Exploring deep eutectic solvents for the electrochemical and chemical synthesis of photo- and electro-catalysts for hydrogen evolution. International Journal of Hydrogen Energy, 48(100), 39823–39853. https://doi.org/10.1016/j.ijhydene.2023.07.158.
    37. Nelson, C. (1985). Method and apparatus for automated chemical milling of compound curved surfaces (US Patent No. 4523973A). https://worldwide.espacenet.com/patent/search/family/024165286/publication/US4523973A.
    38. Jaffe, H. R., & Mitzelman, I. (1986). Automated chemical milling process (US Patent No. 4585519A). https://worldwide.espacenet.com/patent/search/family/023848135/publication/US4585519A.
    39. Chang, Y., et al. (2018). Closed-loop electrochemical recycling of spent copper (II) from etchant wastewater using a carbon nanotube modified graphite felt anode. Environmental Science & Technology, 52(10), 5940–5948. https://doi.org/10.1021/acs.est.7b06298.
    40. Sun, Z., Xiao, Y., Sietsma, J., Agterhuis, H., & Yang, Y. (2015). A cleaner process for selective recovery of valuable metals from electronic waste of complex mixtures of end-of-life electronic products. Environmental Science & Technology, 49(13), 7981–7988. https://doi.org/10.1021/acs.est.5b01023.
    41. Rai, V., Liu, D., Xia, D., Jayaraman, Y., & Gabriel, J.-C. P. (2021). Electrochemical approaches for the recovery of metals from electronic waste: A critical review. Recycling, 6(3), 53. https://doi.org/10.3390/recycling6030053.
    42. Lee, J., Shin, Y., Ryu, H., Boo, C., & Hong, S. (2025). Toward zero liquid discharge treatment of semiconductor wastewaters with a hybrid system integrating forward osmosis and multi-stage nanofiltration. Water Research, 279, 123410. https://doi.org/10.1016/j.watres.2025.123410.
    43. Aoudj, S., Khelifa, A., & Drouiche, N. (2017). Removal of fluoride, SDS, ammonia and turbidity from semiconductor wastewater by combined electrocoagulation–electroflotation. Chemosphere, 180, 379–387. https://doi.org/10.1016/j.chemosphere.2017.04.045.
    44. Chatla, A., et al. (2023). Sulphate removal from aqueous solutions: State-of-the-art technologies and future research trends. Desalination, 558, 116615. https://doi.org/10.1016/j.desal.2023.116615.
    45. Pines Pozo, M. T., Lopez Fernandez, E., Villaseñor, J., Leon-Fernandez, L. F., & Fernandez-Morales, F. J. (2025). Metal recovery from wastes: A review of recent advances in the use of bioelectrochemical systems. Applied Sciences, 15(3), 1456. https://doi.org/10.3390/app15031456.
    46. Nahar, Y., & Thickett, S. C. (2021). Greener, faster, stronger: The benefits of deep eutectic solvents in polymer and materials science. Polymers, 13(3), 447. https://doi.org/10.3390/polym13030447.
    47. Shah, I. A., Koekkoek, A. J. J., Van Enckevort, W. J. P., & Vlieg, E. (2009). Influence of additives on alkaline etching of silicon (111). Crystal Growth & Design, 9(10), 4315–4323. https://doi.org/10.1021/cg900137h.
    48. Iqbal, S., et al. (2018). Highly-efficient low cost anisotropic wet etching of silicon wafers for solar cells application. AIP Advances, 8(2), 025223. https://doi.org/10.1063/1.5012125.
    49. Stefanescu, A., & Erk, H. F. (2001). Alkaline etching solution and process for etching semiconductor wafers (WO Patent No. 2001034877A1). https://patentscope.wipo.int/search/en/WO2001034877.
    50. Jones, A. R., & Coffman, Q. H. (1962). Composition and process for etching magnesium (US Patent No. 3053719A). https://worldwide.espacenet.com/patent/search/family/025114582/publication/US3053719A.
    51. Chen, L., et al. (2025). Corrosion of commercial pure titanium and two titanium alloys in extremely high-chloride and high-alkali seawater electroly-sis environment. Journal of Alloys and Compounds, 1020, 179431. https://doi.org/10.1016/j.jallcom.2025.179431.
    52. Sutter, E. M. M., & Goetz-Grandmont, G. J. (1990). The behaviour of titanium in nitric-hydrofluoric acid solutions. Corrosion Science, 30(4–5), 461–476. https://doi.org/10.1016/0010-938X(90)90051-6.
    53. American Iron and Steel Institute. (2020). Cleaning and descaling stainless steels: A designers’ handbook series no. 9001. Nickel Institute.
    54. Bright, R., et al. (2022). Bio-inspired nanostructured Ti-6Al-4V alloy: The role of two alkaline etchants and the hydrothermal processing duration on antibacterial activity. Nanomaterials, 12(7), 1140. https://doi.org/10.3390/nano12071140.
  • Downloads

  • How to Cite

    More, A. S. . ., Desai , M. S. ., & Patil, S. M. (2025). Comparative review of alkaline and acidic etchants in ‎chemical milling. International Journal of Basic and Applied Sciences, 14(1), 264-271. https://doi.org/10.14419/hnceca27