Comparative review of alkaline and acidic etchants in chemical milling
-
https://doi.org/10.14419/hnceca27
Received date: April 15, 2025
Accepted date: May 8, 2025
Published date: May 11, 2025
-
Acidic Etchants; Alkaline Etchants; Chemical Milling; Etchants; Etching Solution -
Abstract
Chemical milling is a widely used material removal process in aerospace, electronics, and automotive manufacturing industries. The selection of an appropriate etchant plays a crucial role in determining process efficiency, surface quality, and overall sustainability. This review examines the comparative performance of alkaline and acidic etchants based on key parameters such as etch rate, precision, material compatibility, waste management, and economic feasibility. The primary objective of this study is to analyze the strengths and limitations of both etchant types to provide insights into optimizing chemical milling processes. A structured review methodology is employed, evaluating existing literature and industrial practices to assess the influence of etchant composition on process outcomes. The analysis highlights that alkaline etchants, such as sodium hydroxide and potassium hydroxide, offer high etch rates but often result in rougher surfaces and greater undercut formation. In contrast, acidic etchants, including ferric chloride and nitric acid, provide superior surface finish, better undercut control, and enhanced precision, making them more suitable for applications requiring fine feature definition. The study also identifies key challenges in chemical milling, such as bath longevity, environmental impact, and waste disposal concerns. Future research directions include the development of eco-friendly etchants, automation-driven process optimization, and hybrid etching techniques to improve efficiency while minimizing environmental impact. The findings of this review contribute to a deeper understanding of chemical milling processes, aiding in the selection of suitable etchants for enhanced precision, cost-effectiveness, and sustainability.
-
References
- El-Hofy, H. (2005). Advanced machining processes: Nontraditional and hybrid machining processes. McGraw-Hill.
- Bhattacharyya, B., & Doloi, B. (2020). Machining processes utilizing chemical and electrochemical energy. In Modern Machining Technology (pp. 365–460). Elsevier. https://doi.org/10.1016/B978-0-12-812894-7.00005-0.
- Ikumapayi, O. M., et al. (2023). Non-traditional machining techniques in manufacturing industries – An overview. E3S Web of Conferences, 430, 01213. https://doi.org/10.1051/e3sconf/202343001213.
- Cakir, O., Yardimeden, A., & Ozben, T. (2007). Chemical machining. Archives of Materials Science and Engineering, 28.
- Rohith, R., et al. (2022). Chemical machining process – A review. Proceedings on Engineering Sciences, 4(1), 33–36. https://doi.org/10.24874/PES04.01.005.
- Kumar, A., Apoorva, S., Ashwin Kumar, S. B., Sumanth, H. U., & Nanjundeswaraswamy, T. S. (2019). Chemical blanking and chemical milling process: An outline. International Journal of Engineering Research and Applications (IJERA), 9(10), 83–86.
- Yu, M., et al. (2016). Examining regeneration technologies for etching solutions: A critical analysis of the characteristics and potentials. Journal of Cleaner Production, 113, 973–980. https://doi.org/10.1016/j.jclepro.2015.10.131.
- Kape, J. M. (1970). Chemical etching of aluminium in caustic soda based solutions. Transactions of the IMF, 48(1), 43–50. https://doi.org/10.1080/00202967.1970.11870128.
- Wang, J., et al. (2022). Research status and prospect of laser scribing process and equipment for chemical milling parts in aviation and aerospace. Micromachines, 13(2), 323. https://doi.org/10.3390/mi13020323.
- Çakır, O. (2019). Etchants for chemical machining of aluminium and its alloys. Acta Physica Polonica A, 135(4), 586–587. https://doi.org/10.12693/APhysPolA.135.586.
- Çakır, O. (2007). Study of etch rate and surface roughness in chemical etching of stainless steel. Key Engineering Materials, 364–366, 837–842. https://doi.org/10.4028/www.scientific.net/KEM.364-366.837.
- Çakır, O. (2007). Review of etchants for copper and its alloys in wet etching processes. Key Engineering Materials, 364–366, 460–465. https://doi.org/10.4028/www.scientific.net/KEM.364-366.460.
- Patil, O., & Chanmanwar, R. (2018). Analysis and optimization of photochemical machining on copper. Procedia Computer Science, 133, 464–470. https://doi.org/10.1016/j.procs.2018.07.057.
- Saraf, A. R., & Sadaiah, M. (2013). Application of artificial intelligence for the prediction of undercut in photochemical machining. International Journal of Machining and Machinability of Materials, 6(2), 183. https://doi.org/10.1504/IJMMS.2013.053829.
- Saraf, A. R., & Sadaiah, M. (2017). Magnetic field-assisted photochemical machining (MFAPCM) of SS316L. Materials and Manufacturing Pro-cesses, 32(3), 327–332. https://doi.org/10.1080/10426914.2016.1198014.
- Mathew, A., Kishore, S. R., Tomy, A. T., Sugavaneswaran, M., Scholz, S. G., Elkaseer, A., Wilson, V. H., & John Rajan, A. (2023). Vapour polish-ing of fused deposition modelling (Fdm) parts: A critical review of different techniques, and subsequent surface finish and mechanical properties of the post-processed 3D-printed parts. Progress in Additive Manufacturing, 8(6), 1161–1178. https://doi.org/10.1007/s40964-022-00391-7.
- Broekaert, T. P. E., & Fonstad, C. G. (1992). Novel, organic acid‐based etchants for ingaalas / inp heterostructure devices with alas etch‐stop layers. Journal of The Electrochemical Society, 139(8), 2306–2309. https://doi.org/10.1149/1.2221220.
- DeSalvo, G. C., Tseng, W. F., & Comas, J. (1992). Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs , Al0.3Ga0.7As , In0.2Ga0.8As , In0.53Ga0.47As , In0.52Al0.48As , and InP. Journal of The Electrochemical Society, 139(3), 831–835. https://doi.org/10.1149/1.2069311.
- Jung, K., & Lee, J. (2024). A review of the mechanism and optimization of metal-assisted chemical etching and applications in semiconductors. Mi-cro and Nano Systems Letters, 12(1), 27. https://doi.org/10.1186/s40486-024-00217-x.
- Xu, H., et al. (2006). Chemical etching solutions for titanium and titanium alloys. CN1743508A. Retrieved from https://patents.google.com/patent/CN1743508A/en
- Prasad, A. R., & Prakash, S. (2023). A review on anodizing process of aluminum and non-aluminium alloys. [Unpublished manuscript].
- Beyer, S., & Lukes, R. (1974). Regeneration of ferric chloride copper etching solutions. US Patent 3794571A. https://worldwide.espacenet.com/patent/search/family/022498424/publication/US3794571A.
- Patil, D. H., Thorat, S. B., Khake, R. A., & Mudigonda, S. (2018). Comparative study of FeCl₃ and CuCl₂ on geometrical features using photo-chemical machining of Monel 400. Procedia CIRP, 68, 144–149. https://doi.org/10.1016/j.procir.2017.12.084.
- Choi, K., Kim, S., Lee, J., Chu, B., & Jeong, D. (2024). Eco‐friendly glass wet etching for MEMS application: A review. Journal of the American Ceramic Society, 107 (10), 6497–6515. https://doi.org/10.1111/jace.19961.
- Dumbre, J., Tong, Z., Dong, D., Qiu, D., & Easton, M. (2024). Buffered oxide etch: A safer, more effective etchant for additively manufactured Ti-alloys. Metallography, Microstructure, and Analysis, 13(5), 871–879. https://doi.org/10.1007/s13632-024-01094-x.
- Zubel, I., Barycka, I., Kotowska, K., & Kramkowska, M. (2001). Silicon anisotropic etching in alkaline solutions IV. Sensors and Actuators A: Physical, 87(3), 163–171. https://doi.org/10.1016/S0924-4247(00)00481-7.
- Solvay Solutions UK Ltd. (1981). Etching composition. GB Patent No. GB2067958A. https://worldwide.espacenet.com/patent/search/family/026274270/publication/GB2067958A.
- Sesana, R., Spriano, S., Ferraris, S., & Matteis, P. (2019). Fatigue resistance of light alloy sheets undergoing eco-friendly chemical milling: Metal-lurgical and chemical aspects. Procedia Structural Integrity, 19, 362–369. https://doi.org/10.1016/j.prostr.2019.12.039.
- Murski, K. J. (1982). Ammoniacal alkaline cupric etchant solution for and method of reducing etchant undercut (US Patent No. 4319955A). https://worldwide.espacenet.com/patent/search/family/022757083/publication/US4319955A.
- Chiang, J. (1974). Process of etching copper circuits with alkaline persulfate and compositions therefore (US Patent No. 3837945A). https://worldwide.espacenet.com/patent/search/family/022891621/publication/US3837945A.
- Taylor, E., & Sun, J. (2005). Electrochemical etching of circuitry for high density interconnect electronic modules (US Patent No. US20050145506A1). https://worldwide.espacenet.com/patent/search/family/034710805/publication/US2005145506A1.
- Stephen, A. (2011). Mechanisms and applications of laser chemical machining. Physics Procedia, 12, 261–267. https://doi.org/10.1016/j.phpro.2011.03.132.
- Leone, C., Lopresto, V., Memola Capece Minutolo, F., De Iorio, I., & Rinaldi, N. (2010). Laser ablation of maskant used in chemical milling pro-cess for aerospace applications. In T. Dreischuh, P. A. Atanasov, & N. V. Sabotinov (Eds.), Proceedings of SPIE, 77511M–77511M–9. https://doi.org/10.1117/12.876386.
- Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical Reviews, 114(21), 11060–11082. https://doi.org/10.1021/cr300162p.
- Lomba, L., García, C. B., Ribate, M. P., Giner, B., & Zuriaga, E. (2021). Applications of deep eutectic solvents related to health, synthesis, and ex-traction of natural based chemicals. Applied Sciences, 11(21), 10156. https://doi.org/10.3390/app112110156.
- Kityk, A., Pavlik, V., & Hnatko, M. (2023). Exploring deep eutectic solvents for the electrochemical and chemical synthesis of photo- and electro-catalysts for hydrogen evolution. International Journal of Hydrogen Energy, 48(100), 39823–39853. https://doi.org/10.1016/j.ijhydene.2023.07.158.
- Nelson, C. (1985). Method and apparatus for automated chemical milling of compound curved surfaces (US Patent No. 4523973A). https://worldwide.espacenet.com/patent/search/family/024165286/publication/US4523973A.
- Jaffe, H. R., & Mitzelman, I. (1986). Automated chemical milling process (US Patent No. 4585519A). https://worldwide.espacenet.com/patent/search/family/023848135/publication/US4585519A.
- Chang, Y., et al. (2018). Closed-loop electrochemical recycling of spent copper (II) from etchant wastewater using a carbon nanotube modified graphite felt anode. Environmental Science & Technology, 52(10), 5940–5948. https://doi.org/10.1021/acs.est.7b06298.
- Sun, Z., Xiao, Y., Sietsma, J., Agterhuis, H., & Yang, Y. (2015). A cleaner process for selective recovery of valuable metals from electronic waste of complex mixtures of end-of-life electronic products. Environmental Science & Technology, 49(13), 7981–7988. https://doi.org/10.1021/acs.est.5b01023.
- Rai, V., Liu, D., Xia, D., Jayaraman, Y., & Gabriel, J.-C. P. (2021). Electrochemical approaches for the recovery of metals from electronic waste: A critical review. Recycling, 6(3), 53. https://doi.org/10.3390/recycling6030053.
- Lee, J., Shin, Y., Ryu, H., Boo, C., & Hong, S. (2025). Toward zero liquid discharge treatment of semiconductor wastewaters with a hybrid system integrating forward osmosis and multi-stage nanofiltration. Water Research, 279, 123410. https://doi.org/10.1016/j.watres.2025.123410.
- Aoudj, S., Khelifa, A., & Drouiche, N. (2017). Removal of fluoride, SDS, ammonia and turbidity from semiconductor wastewater by combined electrocoagulation–electroflotation. Chemosphere, 180, 379–387. https://doi.org/10.1016/j.chemosphere.2017.04.045.
- Chatla, A., et al. (2023). Sulphate removal from aqueous solutions: State-of-the-art technologies and future research trends. Desalination, 558, 116615. https://doi.org/10.1016/j.desal.2023.116615.
- Pines Pozo, M. T., Lopez Fernandez, E., Villaseñor, J., Leon-Fernandez, L. F., & Fernandez-Morales, F. J. (2025). Metal recovery from wastes: A review of recent advances in the use of bioelectrochemical systems. Applied Sciences, 15(3), 1456. https://doi.org/10.3390/app15031456.
- Nahar, Y., & Thickett, S. C. (2021). Greener, faster, stronger: The benefits of deep eutectic solvents in polymer and materials science. Polymers, 13(3), 447. https://doi.org/10.3390/polym13030447.
- Shah, I. A., Koekkoek, A. J. J., Van Enckevort, W. J. P., & Vlieg, E. (2009). Influence of additives on alkaline etching of silicon (111). Crystal Growth & Design, 9(10), 4315–4323. https://doi.org/10.1021/cg900137h.
- Iqbal, S., et al. (2018). Highly-efficient low cost anisotropic wet etching of silicon wafers for solar cells application. AIP Advances, 8(2), 025223. https://doi.org/10.1063/1.5012125.
- Stefanescu, A., & Erk, H. F. (2001). Alkaline etching solution and process for etching semiconductor wafers (WO Patent No. 2001034877A1). https://patentscope.wipo.int/search/en/WO2001034877.
- Jones, A. R., & Coffman, Q. H. (1962). Composition and process for etching magnesium (US Patent No. 3053719A). https://worldwide.espacenet.com/patent/search/family/025114582/publication/US3053719A.
- Chen, L., et al. (2025). Corrosion of commercial pure titanium and two titanium alloys in extremely high-chloride and high-alkali seawater electroly-sis environment. Journal of Alloys and Compounds, 1020, 179431. https://doi.org/10.1016/j.jallcom.2025.179431.
- Sutter, E. M. M., & Goetz-Grandmont, G. J. (1990). The behaviour of titanium in nitric-hydrofluoric acid solutions. Corrosion Science, 30(4–5), 461–476. https://doi.org/10.1016/0010-938X(90)90051-6.
- American Iron and Steel Institute. (2020). Cleaning and descaling stainless steels: A designers’ handbook series no. 9001. Nickel Institute.
- Bright, R., et al. (2022). Bio-inspired nanostructured Ti-6Al-4V alloy: The role of two alkaline etchants and the hydrothermal processing duration on antibacterial activity. Nanomaterials, 12(7), 1140. https://doi.org/10.3390/nano12071140.
-
Downloads
-
How to Cite
More, A. S. . ., Desai , M. S. ., & Patil, S. M. (2025). Comparative review of alkaline and acidic etchants in chemical milling. International Journal of Basic and Applied Sciences, 14(1), 264-271. https://doi.org/10.14419/hnceca27
