Biomass study of Anabaena sphaerica cultivated in electroplating industrial effluent

  • Authors

    • Dr. Yasodha. T Madha Engineering College
    • Sugapriya A
    • Reethika S
    • Christy Hepsiba A
    • Abi M
    • Ishwarya M
    2024-03-06
    https://doi.org/10.14419/2b5ppj78
  • Abstract

    The growth of microalga Anabaena sphaerica in electroplating industrial effluent with reference to the vegetative cells , heterocysts and dry biomass weight brings about oxygenation and mineralization in addition to the increase in biomass which serve as a multipurpose raw material to the industries. From lab scale experiments it is demonstrated that the present investigation could be converted to pilot study for large scale production of biofuel and other commodity chemicals. Cultivation of microalgal biomass as a potential resource / raw material for various industries to produce commodity chemicals could enhance the economy and curtail the environmental hazards.

     

  • References

    1. Allen MB, Arnon DI (1955) Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiol 30(4):366–372. https://doi.org/10.1104/pp.30.4.366.
    2. APHA.2012, Standard Methods of Water and Wastewater Analysis.22nd Edn.American Public Health Association.Washington DC.USA.
    3. Brandão, Barbara & Oliveira, Carlos Yure B. & Santos, Elizabeth & Lima de Abreu, Jéssika & Oliveira, Deyvid & Silva, Suzianny & Galvez, Alfredo. (2023). Microalgae-based domestic wastewater treatment: a review of biological aspects, bioremediation potential, and biomass production with biotechnological high-value. Environmental Monitoring and Assessment. 195. 1384. https://doi.org/10.1007/s10661-023-12031-w.
    4. Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74(4):529–551. https://doi.org/10.1128/MMBR.00033-10.
    5. Burnat M, Herrero A, Flores E (2014) Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci U S A 111(10):3823–3828. https://doi.org/10.1073/pnas.1318564111.
    6. Cardona, T.; Battchikova, N.; Zhang, P.P.; Stensjo, K.; Aro, E.M.; Lindblad, P.; Magnuson, A. Acta (2009) Electron transfer protein complexes in the thylakoid membranes of heterocysts from the cyanobacterium Nostoc punctiforme. Biochim. Biophys., 1787, 252–263. https://doi.org/10.1016/j.bbabio.2009.01.015.
    7. Carey C.C., Ibelings B.W., Hoffmann E.P., Hamilton D.P., Brookes J.D. (2012) Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res.; 46:1394–1407. https://doi.org/10.1016/j.watres.2011.12.016.
    8. Corrales-Guerrero, L, V. Mariscal, D.J. Nurnberg, J. Elhai, C.W. Mullineaux, E. Flores, A. Herrero, Subcellular localization and clues for the function of the HetN factor influencing heterocyst distribution in Anabaena sp strain PCC 7120, J.Bacteriol. 196 (2014) 3452–3460. https://doi.org/10.1128/JB.01922-14.
    9. Desbois, A. P., Mearns-spragg, A., and Smith, V. J. (2009). A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar. Biotechnol. 11, 45–52. https://doi.org/10.1007/s10126-008-9118-5.
    10. Dufosse, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Murthy, K. N. C (2005). Microorganisms and microalgae as sources of pigments for food use: Ascientific oddity or an industrial reality? Trends Food Sci. Technol. 16 (9), 389–406. https://doi.org/10.1016/j.tifs.2005.02.006.
    11. Ehira, S(2013).Transcriptional regulation of heterocyst differentiation in Anabaena sp.strain PCC 7120, Russ. J. Plant Physiol. 60. https://doi.org/10.1134/S1021443713040043.
    12. Flores, E.; Herrero, A. (2010) Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol., 8, 39–50. https://doi.org/10.1038/nrmicro2242.
    13. Helena A. Cmiech, Gordon F. Leedale and Colin S. Reynolds (1986) Morphological and ultrastructural variability of planktonic cyanophyceae in relation to seasonal periodicity., British Phycological Journal, 21:1, 81-92, https://doi.org/10.1080/00071618600650081.
    14. Herrero A.; Picossi, S.; Flores, E.2013. Gene expression during heterocyst differentiation. In Advances in Botanical Research, Genomics of Cyanobacteria; Chauvat, F., Cassier-Chauvat, C., Eds.; Academic Press: Cambridge, MA, USA, ; pp. 281–329. https://doi.org/10.1016/B978-0-12-394313-2.00008-1.
    15. Jais, N. M., Mohamed, R. M. S. R., Al-Gheethi, A. A., and Hashim, M. K. (2017).
    16. The dual roles of phycoremediation of wet market wastewater for nutrients and heavy metals removal andmicroalgae biomass production. Clean. Technol. Environ.Policy 19 (1), 37–52. https://doi.org/10.1007/s10098-016-1235-7.
    17. Khanzada, Z.T. Phosphorus removal from landfill leachate by microalgae. Biotechnol. Rep. 2020, 25, e00419. https://doi.org/10.1016/j.btre.2020.e00419.
    18. Kumar K, Mella-Herrera RA, Golden JW (2010) Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2(4): ARTN a000315. https://doi.org/10.1101/cshperspect.a000315.
    19. Kumazaki, S.; Akari, M.; Hasegawa, M. Transformation of Thylakoid Membranes during Differentiation from Vegetative Cell into Heterocyst Visualized by Microscopic Spectral Imaging. Plant Physiol. 2013, 161, 1321–1333. https://doi.org/10.1104/pp.112.206680.
    20. Laamanen M and Kuosa H( 2005). Annual variability of biomass and heterocysts of the Nostoc. Boreal Environ. Res. ;10:19–30 Li, Y.; Chen, Y.-F.; Chen, P.; Min, M.; Zhou, W.; Martinez, B.; Zhu, J.; Ruan, R. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour. Technol. 2011, 102, 5138–5144. https://doi.org/10.1016/j.biortech.2011.01.091.
    21. Lima, S., Villanova, V., Grisafi, F., Caputo, G., Brucato, A., and Scargiali, F. (2020). Autochthonous microalgae grown in municipal wastewaters as a tool for effectively removing nitrogen and phosphorous. J. Water Process Eng. 38, 101647. https://doi.org/10.1016/j.jwpe.2020.101647.
    22. Luther, M. Degradation of different substituted aromatic compounds as nutrient sources by the green alga Scenedesmus obliquus. In Proceedings of the Dechema Biotechnol Conference 4, Weinheim, NY, USA, 28–30 May 1990; pp. 613–615.
    23. Masukawa H, Sakurai H, Hausinger RP, Inoue K (2014) Sustained photobiological hydrogen production in the presence of N2 by nitrogenase mutants of the heterocyst-forming cyanobacterium Anabaena. Int J Hydrogen Energ 39(34):19444–19451. https://doi.org/10.1016/j.ijhydene.2014.09.090.
    24. Meeks JC, Campbell EL, Summers ML, Wong FC (2002) Cellular differentiation in the cyanobacterium Nostoc punctiforme. Arch Microbiol 178(6):395–403. https://doi.org/10.1007/s00203-002-0476-5.
    25. Metcalf and Eddy, 1997. Waste water Engineering - Treatment, Disposals and Reuse. Tata McGraw Hill, New Delhi.
    26. Peter, A. P., Khoo, K. S., Chew, K. W., Ling, T. C., Ho, S. H., Chang, J. S., et al. (2021). Microalgae for biofuels, wastewater treatment and environmental monitoring. Environ. Chem. Lett. 19 (4), 2891–2904. https://doi.org/10.1007/s10311-021-01219-6.
    27. Razzak, S. A., Ali, S. A.M., Hossain,M.M., and deLasa, H. (2017). Biological CO2 fixation with production of microalgae in wastewater – a review. Renew. Sustain.Energy Rev. 76, 379–390. https://doi.org/10.1016/j.rser.2017.02.038.
    28. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. and Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111(1): 1-61. https://doi.org/10.1099/00221287-111-1-1.
    29. Ryckebosch, E., Bruneel, C., Termote-Verhalle, R., Goiris, K., Muylaert, K., and Foubert, I. (2014). Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem. x. 160, 393–400. https://doi.org/10.1016/j.foodchem.2014.03.087.
    30. Srinuanpan, S., Cheirsilp, B., and Kassim, M. A. (2020). “Oleaginous microalgae cultivation for biogas upgrading and phytoremediation of wastewater,” in Microalgae cultivation for biofuels production. Editor A. Yousuf (Cambridge, Massachusetts: Elsevier Academic Press), 69–82. https://doi.org/10.1016/B978-0-12-817536-1.00005-9.
    31. Santamaría-Góme z, J.; Mariscal, V.; Luque, I. Mechanisms for Protein Redistribution in Thylakoids of Anabaena during Cell Differentiation. Plant Cell Physiol. 2018, 59, 1860–1873. https://doi.org/10.1093/pcp/pcy103.
    32. Sforza, E.; Khairallah Al Emara, M.H.; Sharif, A.; Bertucco, A. Exploitation of urban landfill leachate as nutrient source for microalgal biomass production. Chem. Eng. Trans. 2015, 43, 373–378.
    33. Snedecor GW, Cohran WG. Statistical methods. 8th edition. IOWA state University Press/Ames IOWA-50010. 1991.
    34. Tao, R., Kinnunen, V., Praveenkumar, R., Lakaniemi, A. M., and Rintala, J. A. (2017). Comparison of Scenedesmus acuminatus and Chlorella vulgaris cultivation in liquid digestates from anaerobic digestion of pulp and paper industry and municipal wastewater treatment sludge. J. Appl. Phycol. 29 (6), 2845–2856. https://doi.org/10.1007/s10811-017-1175-6.
    35. Valladares, A.; Maldener, I.; Muro-Pastor, A.M.; Flores, E.; Herrero, A. Heterocyst development and diazotrophic metabolism in terminal respiratory oxidase mutants of the cyanobacterium Anabaena sp strain PCC 7120. J. Bacteriol. 2007, 189, 4425–4430 https://doi.org/10.1128/JB.00220-07.
    36. Wolk CP, Ernest A, Elhai J (1994) Heterocyst metabolism and development. In: Bryant DA (ed) The molecular biology of cyanobacteria. Springer (Kluwer Academic Publishers), Dordrecht, pp 769–823. https://doi.org/10.1007/978-94-011-0227-8_27.
    37. Wood NB, Haselkorn R (1980) Control of phycobiliprotein proteolysis and heterocyst differentiation in Anabaena. J Bacteriol 141(3):1375–1385 https://doi.org/10.1128/jb.141.3.1375-1385.1980.
    38. Yasodha, T., 2009. Biosorptive potentiality of agarose immobilised biomass of Anabaena (AIBA) for Ni (II) recovery. Adv. Plant Sci., 22: 11-13.
    39. Yuan Z, Wang Z, Takala J, Hiltunen E, Qin L, Xu Z, Qin X, Zhu L. Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresour Technol. 2013; 137:318–25. https://doi.org/10.1016/j.biortech.2013.03.144.
    40. Zhu, C.J., Lee, Y.K. Determination of biomass dry weight of marine microalgae. Journal of Applied Phycology 9, 189–194 (1997). https://doi.org/10.1023/A:1007914806640.
  • Downloads

  • How to Cite

    Yasodha. T , D., M, A., & M, I. (2024). Biomass study of Anabaena sphaerica cultivated in electroplating industrial effluent (S. A, R. S, & C. Hepsiba A , Trans.). International Journal of Biological Research, 11(1), 12-15. https://doi.org/10.14419/2b5ppj78