Exploring crop genomics: role of molecular markers in identifying genetic diversity and characterization

  • Authors

    • Renuk G Hanamkonda
    • Shankar T HoD & Associate Prof of Botany SRR Govt. Arts & Science College, Karimnagar
    • Venkateshwarlu. M Assistant Prof of Botany University College Kakatiya University, Warangal
    • Jayesh T Salve Department of Botany, Pratap College, Amalner (Autonomous) Amalner 425401
    • Dhale D . A 5 Department of Botany, SSVPS'S, L.K. Dr. P. R. Ghogrey Science College, Dhule (Maharashtra)
    • Ugandhar T HoD Department of Botany NRR Govt Degree College Mahabubabad
  • Crop Genomics; Molecular Markers; Genetic Diversity; Germplasm Characterization; Sustainable Agriculture; Global Food Security; SNP Markers; SSRs; AFLPs; High-Throughput Genotyping; and Bioinformatics.
  • and facilitating germplasm characterization for crop improvement. Understanding and harnessing crop genetic diversity are paramount with the escalating demand for sustainable agricultural practices and the need to address global food security challenges. Molecular markers have emerged as powerful tools enabling precise identification, characterization, and utilization of genetic resources for crop enhancement.

    The paper provides an in-depth analysis of various molecular marker techniques, encompassing DNA-based markers such as single nucleotide polymorphisms (SNPs), simple sequence repeats (SSRs), and amplified fragment length polymorphisms (AFLPs), as well as RNA-based markers like expression sequence tags (ESTs) and microRNAs. By elucidating genetic relationships, population structure, and phylogenetic analysis, these markers facilitate the conservation and utilization of crop germplasm. Moreover, the review highlights recent advancements in high-throughput genotyping technologies and bioinformatics tools, which have revolutionized crop genomic research. These advancements enable comprehensive genome-wide analyses, accelerating breeding efforts for the development of improved crop varieties with enhanced traits such as yield, quality, and stress tolerance. Integration of molecular marker-assisted selection (MAS) into breeding programs further enhances the efficiency and precision of crop improvement strategies.

    Despite the significant contributions of molecular markers to crop genomics, challenges persist. The review addresses these challenges and discusses potential solutions, emphasizing the importance of collaborative efforts, data sharing, and interdisciplinary research endeavors. By overcoming these hurdles, the agricultural community can fully harness the potential of genomics for sustainable crop improvement, thus addressing global food security challenges in the face of changing environmental conditions and population growth.

    In conclusion, understanding the role of molecular markers in crop genomics is crucial for optimizing breeding strategies, conserving genetic resources, and developing resilient crop varieties to meet the demands of a growing population and ensure food security in a changing world.


  • References

    1. Acquaah, G. (2007). Principles of Plant Genetics and Breeding. Blackwell Publishing.
    2. Adams, M. D., Kelley, J. M., Gocayne, J. D., Dubnick, M., Polymeropoulos, M. H., Xiao, H., ... & Venter, J. C. (1991). Complemen-tary DNA sequencing: expressed sequence tags and human genome project. Science, 252(5013), 1651-1656. https://doi.org/10.1126/science.2047873.
    3. Agarwal, M., Shrivastava, N., & Padh, H. (2008). Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports, 27(4), 617-631. https://doi.org/10.1007/s00299-008-0507-z.
    4. Anderson, J. A., Churchill, G. A., Autrique, J. E., Tanksley, S. D., & Sorrells, M. E. (1993). Optimizing parental selection for genetic linkage maps. Genome, 36(1), 181-186. https://doi.org/10.1139/g93-024.
    5. Arteaga, M. C., Moreno-Letelier, A., Mastretta-Yanes, A., Vázquez-Lobo, A., Breña-Ochoa, A., Moreno-Estrada, A., ... & Eguiarte, L. E. (2016). Genomic variation in recently collected maize landraces from Mexico. Genetic Resources and Crop Evolution, 63(4), 711-726. https://doi.org/10.1016/j.gdata.2015.11.002.
    6. Barker, J. S. F., Moore, S. S., Hetzel, D. J. S., Evans, D., Tan, S. G., & Byrne, K. (1999). Genetic diversity of Asian water buffalo (Bu-balus bubalis): Microsatellite variation and a comparison with protein-coding loci. Animal Genetics, 28(2), 103-115. https://doi.org/10.1111/j.1365-2052.1997.00085.x.
    7. Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction frag-ment length polymorphisms. American Journal of Human Genetics, 32(3), 314-331.
    8. Collard, B. C. Y., & Mackill, D. J. (2008). Marker-assisted selection: An approach for precision plant breeding in the twenty-first cen-tury. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 557-572. https://doi.org/10.1098/rstb.2007.2170.
    9. Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A robust, simple genotyp-ing-by-sequencing (GBS) approach for high diversity species. PLoS One, 6(5), e19379. https://doi.org/10.1371/journal.pone.0019379.
    10. Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to Quantitative Genetics. Longman Group Ltd.
    11. Fernie, A. R., & Schauer, N. (2009). Metabolomics-assisted breeding: a viable option for crop improvement? Trends in Genetics, 25(1), 39-48. https://doi.org/10.1016/j.tig.2008.10.010.
    12. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., ... & Zaks, D. P. (2011). Solutions for a cul-tivated planet. Nature, 478(7369), 337-342. https://doi.org/10.1038/nature10452.
    13. Frankham, R., Ballou, J. D., & Briscoe, D. A. (2002). Introduction to Conservation Genetics. Cambridge University Press. https://doi.org/10.1017/CBO9780511808999.
    14. Gepts, P. (2006). Plant Genetic Resources Conservation and Utilization: The Accomplishments and Future of a Societal Insurance Poli-cy. Crop Science, 46(5), 2278-2292. https://doi.org/10.2135/cropsci2006.03.0169gas.
    15. Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015). Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives. Genetics Research International, 2015, 431487. https://doi.org/10.1155/2015/431487.
    16. Gupta, P. K., & Varshney, R. K. (2000). The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica, 113(3), 163-185. https://doi.org/10.1023/A:1003910819967.
    17. Hajjar, R., & Hodgkin, T. (2007). The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Eu-phytica, 156(1-2), 1-13. https://doi.org/10.1007/s10681-007-9363-0.
    18. Hedrick, P. W. (1999). Highly variable loci and their interpretation in evolution and conservation. Evolution, 53(2), 313-318. https://doi.org/10.2307/2640768.
    19. Heffner, E. L., Sorrells, M. E., & Jannink, J. L. (2009). Genomic selection for crop improvement. Crop Science, 49(1), 1-12. https://doi.org/10.2135/cropsci2008.08.0512.
    20. Hickey, J. M., Chiurugwi, T., Mackay, I., Powell, W., & Mwadzingeni, L. (2017). Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nature Genetics, 49(9), 1297-1303. https://doi.org/10.1038/ng.3920.
    21. Hoisington, D., Khairallah, M., & González-de-León, D. (1999). Laboratory Protocols: CIMMYT Applied Molecular Genetics Labora-tory. CIMMYT. Hospital, F. (2001). Marker-assisted breeding. In Plant Breeding Reviews (pp. 145-217). John Wiley & Sons, Inc.
    22. Hou, J., Jiang, Q., Hao, C., Wang, Y., Zhang, H., & Zhang, X. (2012). Global selection on sucrose synthase haplotypes during a centu-ry of wheat breeding. Plant Physiology, 160(3), 986-997.
    23. Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., ... & Li, W. (2010). Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 42(11), 961-967. https://doi.org/10.1038/ng.695.
    24. Hughes, A. R., Inouye, B. D., Johnson, M. T., Underwood, N., & Vellend, M. (2008). Ecological consequences of genetic diversity. Ecology Letters, 11(6), 609-623. https://doi.org/10.1111/j.1461-0248.2008.01179.x.
    25. Jarvis, D. I., Brown, A. H., Cuong, P. H., Collado-Panduro, L., Latournerie-Moreno, L., Gyawali, S., ... & Sadiki, M. (2008). A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proceedings of the National Academy of Sciences, 105(14), 5326-5331. https://doi.org/10.1073/pnas.0800607105.
    26. Jones, C. J., Edwards, K. J., Castaglione, S., et al. (1997). Reproducibility testing of RAPD, AFLP, and SSR markers in plants by a net-work of European laboratories. Molecular Breeding, 3(5), 381-390. https://doi.org/10.1023/A:1009612517139.
    27. Jones-Rhoades, M. W., Bartel, D. P., & Bartel, B. (2006). MicroRNAs and their regulatory roles in plants. Annual Review of Plant Bi-ology, 57, 19-53. https://doi.org/10.1146/annurev.arplant.57.032905.105218.
    28. Karp, A., Seberg, O., & Buiatti, M. (1997). Molecular techniques in the assessment of botanical diversity. Annals of Botany, 78(2), 143-149. https://doi.org/10.1006/anbo.1996.0106.
    29. Kumar, L. S. (2009). DNA markers in plant improvement: An overview. Biotechnology Advances, 17(2-3), 143-182. https://doi.org/10.1016/S0734-9750(98)00018-4.
    30. Lande, R. (1996). Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos, 76(1), 5-13. https://doi.org/10.2307/3545743.
    31. Lewontin, R. C. (1974). The Genetic Basis of Evolutionary Change. Columbia University Press.
    32. Litt, M., & Luty, J. A. (1989). A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the car-diac muscle actin gene. American Journal of Human Genetics, 44(3), 397-401.
    33. Lu, Y., Yan, J., Guimarães, C. T., Taba, S., Hao, Z., Gao, S., ... & Xu, Y. (2010). Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theoretical and Applied Genetics, 120(1), 93-115. https://doi.org/10.1007/s00122-009-1162-7.
    34. Lynch, M., & Walsh, B. (1998). Genetics and Analysis of Quantitative Traits. Sinauer Associates.
    35. Mace, E. S., Phong, D. T., Upadhyaya, H. D., Chandra, S., & Prasad, S. (2013). A global view of genetic diversity in cultivated sor-ghums using a core SNP marker set. Genome Biology, 14(12), R134.
    36. Mammadov, J., Chen, W., Ren, R., et al. (2012). Development of highly polymorphic SNP markers from the complexity-reduced por-tion of maize (Zea mays L.) genome for use in marker-assisted breeding. Theoretical and Applied Genetics, 124(3), 527-543.
    37. Mardis, E. R. (2013). Next-generation sequencing platforms. Annual Review of Analytical Chemistry, 6, 287-303. https://doi.org/10.1146/annurev-anchem-062012-092628.
    38. Mohan, M., Nair, S., Bhagwat, A., et al. (1997). Genome mapping, molecular markers and marker-assisted selection in crop plants. Molecular Breeding, 3(2), 87-103. https://doi.org/10.1023/A:1009651919792.
    39. Nei, M. (1987). Molecular Evolutionary Genetics. Columbia University Press. https://doi.org/10.7312/nei-92038.
    40. Nei, M., & Kumar, S. (2000). Molecular Evolution and Phylogenetics. Oxford University Press. https://doi.org/10.1093/oso/9780195135848.001.0001.
    41. Paterson, A. H., Lander, E. S., Hewitt, J. D., Peterson, S., Lincoln, S. E., & Tanksley, S. D. (1988). Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 335(6192), 721-726. https://doi.org/10.1038/335721a0.
    42. Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537-2539. https://doi.org/10.1093/bioinformatics/bts460.
    43. Poland, J. A., Brown, P. J., Sorrells, M. E., & Jannink, J. L. (2012). Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One, 7(2), e32253. https://doi.org/10.1371/journal.pone.0032253.
    44. Powell, W., Machray, G. C., & Provan, J. (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1(7), 215-222. https://doi.org/10.1016/1360-1385(96)86898-1.
    45. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., & Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2(3), 225-238. https://doi.org/10.1007/BF00564200.
    46. Rafalski, J. A. (2002). Applications of single nucleotide polymorphisms in crop genetics. Current Opinion in Plant Biology, 5(2), 94-100. https://doi.org/10.1016/S1369-5266(02)00240-6.
    47. Reed, D. H., & Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology, 17(1), 230-237. https://doi.org/10.1046/j.1523-1739.2003.01236.x.
    48. Salem, K. F. M., El-Zanaty, A. M., & Esmail, R. M. (2015). Assessing wheat (Triticum aestivum L.) genetic diversity using morpho-logical characters and microsatellites. World Applied Sciences Journal, 33(9), 1445-1452.
    49. Scheben, A., Wolter, F., Batley, J., Puchta, H., & Edwards, D. (2017). Towards CRISPR/Cas crops-bringing together genomics and ge-nome editing. New Phytologist, 216(3), 682-698. https://doi.org/10.1111/nph.14702.
    50. Schlotterer, C. (2004). The evolution of molecular markers—just a matter of fashion? Nature Reviews Genetics, 5(1), 63-69. https://doi.org/10.1038/nrg1249.
    51. Singh, N., Choudhury, D. R., Singh, A. K., Kumar, S., Srinivasan, K., Tyagi, R. K., ... & Singh, N. K. (2018). Genetic diversity trend in Indian rice varieties: An analysis using SSR markers. BMC Genetics, 19(1), 1-10.
    52. Singh, R., Singh, D., & Singh, R. (2014). Molecular Breeding for Sustainable Crop Improvement. Springer.
    53. Sonah, H., Bastien, M., Iquira, E., Tardivel, A., Légaré, G., Boyle, B., ... & Belzile, F. (2013). An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PloS One, 8(1), e54603. https://doi.org/10.1371/journal.pone.0054603.
    54. Tanksley, S. D. (1993). Mapping polygenes. Annual Review of Genetics, 27(1), 205-233. Tanksley, S. D., & McCouch, S. R. (1997). Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 277(5329), 1063-1066. https://doi.org/10.1126/science.277.5329.1063.
    55. Tautz, D. (1989). Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research, 17(16), 6463-6471. https://doi.org/10.1093/nar/17.16.6463.
    56. Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818-822. https://doi.org/10.1126/science.1183700.
    57. Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818-822. https://doi.org/10.1126/science.1183700.
    58. Van de Wouw, M., van Hintum, T., Kik, C., van Treuren, R., & Visser, B. (2010). Genetic diversity trends in twentieth-century crop cultivars: A meta-analysis. Theoretical and Applied Genetics, 120(6), 1241-1252. Van Hintum, T. J. L., Brown, A. H. D., Spillane, C., & Hodgkin, T. (2000). Core collections of plant genetic resources. IPGRI. https://doi.org/10.1007/s00122-009-1252-6.
    59. Varshney, R. K., Bohra, A., Yu, J., Graner, A., & Zhang, Q. (2018). Sorrells, M. E. genomic applications in agriculture: Next generation sequencing, genotyping, and beyond. Molecular Breeding, 35(1), 1-13.
    60. Varshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genic microsatellite markers in plants: features and applications. Trends in Bio-technology, 23(1), 48-55. https://doi.org/10.1016/j.tibtech.2004.11.005.
    61. Varshney, R. K., Nayak, S. N., May, G. D., & Jackson, S. A. (2009). Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends in Biotechnology, 27(9), 522-530. https://doi.org/10.1016/j.tibtech.2009.05.006.
    62. Vignal, A., Milan, D., SanCristobal, M., & Eggen, A. (2002). A review on SNP and other types of molecular markers and their use in animal genetics. Genetics Selection Evolution, 34(3), 275-305. https://doi.org/10.1186/1297-9686-34-3-275.
    63. Vos, P., Hogers, R., Bleeker, M., et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23(21), 4407-4414. https://doi.org/10.1093/nar/23.21.4407.
    64. Wang, Q., Tian, F., Pan, Y., Buckler, E. S., & Zhang, Z. (2014). A SUPER powerful method for genome-wide association study. PloS One, 9(9), e107684. https://doi.org/10.1371/journal.pone.0107684.
    65. Weir, B. S. (1996). Genetic Data Analysis II: Methods for Discrete Population Genetic Data. Sinauer Associates.
    66. Welsh, J., & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18(24), 7213-7218. https://doi.org/10.1093/nar/18.24.7213.
    67. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22), 6531-6535. https://doi.org/10.1093/nar/18.22.6531.
    68. Xu, X., Liu, X., Ge, S., Jensen, J. D., Hu, F. Y., Li, X., ... & Li, J. (2011). Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, 30(1), 105-111. https://doi.org/10.1038/nbt.2050.
    69. Xu, X., Liu, X., Ge, S., Jensen, J. D., Hu, F., Li, X., ... & Wang, W. (2016). Resequencing 50 accessions of cultivated and wild rice Xu, Y. (2010). Molecular Plant Breeding. CABI. https://doi.org/10.1079/9781845933920.0000.
  • Downloads

  • How to Cite

    G, R., T, S., M, V. ., T Salve , J. ., D . A, D., & T, U. (2024). Exploring crop genomics: role of molecular markers in identifying genetic diversity and characterization. International Journal of Biological Research, 11(2), 36-44. https://doi.org/10.14419/0ddrdh35