Revolutionizing plant breeding: a historical perspective from cross-pollination to gene editing

  • Authors

    • Ugandhar T Department of Botany Kakatiya Govt College, Hanamkonda Dist: Hanamkonda-506001 (T.G.)
    • Komala. E Department of Botany Kakatiya Govt College, Hanamkonda Dist: Hanamkonda-506001 (T.G.)
    • Shyam Prasad. S Department of Botany Kakatiya Govt College, Hanamkonda Dist: Hanamkonda-506001 (T.G.)
    • Sammaiah. D Department of Botany Kakatiya Govt College, Hanamkonda Dist: Hanamkonda-506001 (T.G.)
    • Ghan Singh. M Department of Botany Kakatiya Govt College, Hanamkonda Dist: Hanamkonda-506001 (T.G.)
    • Narender M Department of Botany Kakatiya Govt College, Hanamkonda Dist: Hanamkonda-506001 (T.G.)
    • Gandhi N dhartudr@gmail.com
    2024-09-16
    https://doi.org/10.14419/2sz7ka92
  • Genome Editing; CRISPR/Cas9; Hybrid Seed Production; Food Security; Novel Plant Breeding Techniques; Biotic Stress Resistance; Abiotic Stress Resistance; Crop Improvement Sustainable Agriculture; Regulatory Regimesnome Editing; Mutation; Hybrid Seed Production; Quality Improvement; Regulatory Concerns; Genetic Gain; Speed Breeding.
  • Abstract

    The history of plant breeding can be broadly divided into four eras: the Pre-Mendelian era (before 1900), the Mendelian era (1900-1920), the post-Mendelian era (1921-1950), and the Modern era (after 1950). Significant milestones include the release of the first hybrid maize varieties in 1961, the first sorghum hybrid (CSH-1) in 1964, the first bajra hybrid (HB-1) in 1965, and the first pigeon pea hybrid (ICPH-8) in 1991. Achieving a world with zero hunger requires a sustainable increase in food production and distribution and elimination of poverty. This goal demands scientific, logistical, and humanitarian approaches to ensure food security from farmers and breeders to policymakers and governments.

    Conventional breeding techniques alone are insufficient to meet the challenges posed by climate change, biotic and abiotic stress, and the growing global population projected to reach 10 billion by 2050. Novel plant breeding techniques, such as genome editing, speed breeding, and omics technology integration, offer precise, cost-effective, and less time-consuming solutions. These techniques enable the editing of agriculturally significant genes, promoting hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress.

    Genome editing technologies have evolved, with CRISPR/Cas9 and its variants, base editing (BE), and prime editing (PE) playing pivotal roles in generating transgene-free plants. These advancements have significant implications for crop improvement, meeting food and nutrition security, and catering to regional preferences. Syngenta's initiative to open rights to CRISPR-based technologies through the Shoots by Syngenta platform exemplifies the collaborative efforts needed to drive agricultural innovation and sustainability. The review discusses the current regulatory regimes governing genome-edited crops, prospects of new tools such as DNA-free editing systems and nanotechnology, and their applicability in crop improvement. A multidisciplinary approach involving political, social, economic, and scientific stakeholders is essential for the successful adoption of genome editing technologies, which will ultimately make agriculture a lucrative profession and attract youth to the field.

  • References

    1. Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., ... & Liu, D. R. (2019). Search-and-replace ge-nome editing without double-strand breaks or donor DNA. Nature, 576(7785), 149-157. https://doi.org/10.1038/s41586-019-1711-4.
    2. Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408(6814), 796-815. https://doi.org/10.1038/35048692.
    3. Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3), 314-331.
    4. Bouis, H. E., & Saltzman, A. (2017). Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Global Food Security, 12, 49-58. https://doi.org/10.1016/j.gfs.2017.01.009.
    5. Bridges, C. B. (1923). The chromosome theory of heredity. Zeitschrift für induktive Abstammungs- und Vererbungslehre, 32(1), 1-18.
    6. Buffon, G.-L. (1774). Histoire naturelle. Imprimerie Royale.
    7. Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 70, 667-697. https://doi.org/10.1146/annurev-arplant-050718-100049.
    8. Correns, C. (1900). G. Mendel's Law Concerning the Behavior of the Progeny of Racial Hybrids. Botanical Magazine, 82, 158-168.
    9. Darwin, C. (1868). The variation of animals and plants under domestication. John Murray.
    10. de Vries, H. (1900). Sur la loi de disjonction des hybrides. Comptes rendus de l'Académie des sciences, 130, 845-847.
    11. Duvick, D. N. (1999). Heterosis: Feeding people and protecting natural resources. In Genetics and Exploitation of Heterosis in Crops (pp. 19-29). ASA, CSSA, and SSSA. https://doi.org/10.2134/1999.geneticsandexploitation.c3.
    12. European Court of Justice. (2018). Judgment in Case C-528/16: Confédération paysanne and Others v Premier ministre and Ministre de l’Agriculture, de l’Agroalimentaire et de la Forêt. Retrieved from https://curia.europa.eu/juris/liste.jsf?num=C-528/16
    13. FAO. (2020). The State of Food Security and Nutrition in the World 2020. Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/publications
    14. Fernie, A. R., & Schauer, N. (2009). Metabolomics-assisted breeding: a viable option for crop improvement? Trends in Genetics, 25(1), 39-48. https://doi.org/10.1016/j.tig.2008.10.010.
    15. Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399-433. https://doi.org/10.1017/S0080456800012163.
    16. Folta, K. M., & Krichevsky, A. (2020). Public-Private Partnerships in Plant Breeding. The Plant Journal, 101(5), 844-855.
    17. Ghosh, S., Watson, A., Gonzalez-Navarro, O. E., Ramirez-Gonzalez, R. H., Yanes, L., Mendoza-Suárez, M., ... & Hickey, L. T. (2018). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols, 13(12), 2944-2963. https://doi.org/10.1038/s41596-018-0072-z.
    18. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., ... & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383.
    19. Hickey, L. T., Hafeez, A. N., Robinson, H., Jackson, S. A., Leal-Bertioli, S. C., Tester, M., ... & Wulff, B. B. (2019). Breeding crops to feed 10 billion. Nature Biotechnology, 37(7), 744-754. https://doi.org/10.1038/s41587-019-0152-9.
    20. IPCC. (2019). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Intergovernmental Panel on Climate Change. Retrieved from https://www.ipcc.ch/report/srccl/
    21. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA en-donuclease in adaptive bacterial immunity. Science, 337(6096), 816-821. https://doi.org/10.1126/science.1225829.
    22. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA en-donuclease in adaptive bacterial immunity. Science, 337(6096), 816-821. https://doi.org/10.1126/science.1225829.
    23. Jones, D. F. (1922). The product of the combination of Mendelian factors considered as a cause of heterosis. Genetics, 7(5), 456-457.
    24. Kah, M., Kookana, R. S., Gogos, A., & Bucheli, T. D. (2018). A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology, 13(8), 677-684. https://doi.org/10.1038/s41565-018-0131-1.
    25. Kaur, K., & Zhan, X. (2021). DNA-Free Genome Editing for Crop Improvement. Trends in Biotechnology, 39(8), 897-899.
    26. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA with-out double-stranded DNA cleavage. Nature, 533(7603), 420-424. https://doi.org/10.1038/nature17946.
    27. Ladizinsky, G. (1985). The origin of cultivated plants. University of Arizona Press.
    28. Lamarck, J.-B. (1809). Philosophie zoologique. Dentu.
    29. Lamarck, J.-B. (1809). Philosophie Zoologique. Dentu.
    30. Langridge, P. (2019). Syngenta and CRISPR: Crop Innovation through Collaboration. Plant Biotechnology Journal, 17(4), 785-792.
    31. Li, M., Li, X., Zhou, Z., Wu, P., Fang, M., Pan, X., & Lin, Q. (2012). Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance. Journal of Plant Physiology, 169(13), 1400-1409.
    32. Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616-620. https://doi.org/10.1126/science.1204531.
    33. Mendel, G. (1866). Versuche über Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereines in Brünn, 4, 3-47. https://doi.org/10.5962/bhl.title.61004.
    34. MHLW (Ministry of Health, Labour and Welfare). (2019). Guidelines on the handling of foods and food additives derived from ge-nome editing technology. Retrieved from https://www.mhlw.go.jp/stf/newpage_09548.html
    35. Moose, S. P., & Mumm, R. H. (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiolo-gy, 147(3), 969-977. https://doi.org/10.1104/pp.108.118232.
    36. Morgan, T. H. (1915). The mechanism of Mendelian heredity. Henry Holt and Company. https://doi.org/10.5962/bhl.title.22551.
    37. Olby, R. C. (1985). Origins of Mendelism. University of Chicago Press.
    38. Pingali, P. L. (2012). Green Revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences, 109(31), 12302-12308. https://doi.org/10.1073/pnas.0912953109.
    39. Qaim, M. (2020). Role of new plant breeding technologies for food security and sustainable agricultural development. Applied Eco-nomic Perspectives and Policy, 42(2), 129-150. https://doi.org/10.1002/aepp.13044.
    40. Shew, A. M., Nalley, L. L., Snell, H. A., Nayga Jr, R. M., & Dixon, B. L. (2018). CRISPR versus GMOs: Public acceptance and valua-tion. Global Food Security, 19, 71-80. https://doi.org/10.1016/j.gfs.2018.10.005.
    41. Shull, G. H. (1908). The composition of a field of maize. Journal of Heredity, 4(1), 296-301. https://doi.org/10.1093/jhered/os-4.1.296.
    42. Shull, G. H. (1909). A pure line method of corn breeding. American Breeders Association Report, 5, 51-59. https://doi.org/10.1093/jhered/os-5.1.51.
    43. Smyth, S. J., McHughen, A., & Phillips, P. W. B. (2014). Regulating genome edited crops: Risk, uncertainty, and the precautionary prin-ciple. Global Food Security, 3(1), 7-12.
    44. Stuber, C. W. (1994). Heterosis in plant breeding. Plant Breeding Reviews, 12, 227-251. https://doi.org/10.1002/9780470650493.ch8.
    45. Syngenta. (2017). Syngenta Offers Open Access to CRISPR Technology for Non-Commercial Research. Retrieved from https://www.syngenta.com/en/newsroom/news-releases/syngenta-offers-open-access-crispr-technology
    46. Syngenta. (2020). Shoots by Syngenta: Fostering Innovation in Agriculture. Retrieved from https://www.syngenta.com/en/newsroom/news-releases/shoots-syngenta-collaborative-platform
    47. Tautz, D. (1989). Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research, 17(16), 6463-6471. https://doi.org/10.1093/nar/17.16.6463.
    48. Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818-822. https://doi.org/10.1126/science.1183700.
    49. Thompson, J., & Scoones, I. (2009). Addressing the dynamics of agri-food systems: An emerging agenda for social science research. Environmental Science & Policy, 12(4), 386-397. https://doi.org/10.1016/j.envsci.2009.03.001.
    50. USDA (United States Department of Agriculture). (2018). Secretary Perdue issues USDA statement on plant breeding innovation. Re-trieved from https://www.usda.gov/media/press-releases/2018/03/28/secretary-perdue-issues-usda-statement-plant-breeding-innovation
    51. Vaeck, M., Reynaerts, A., Höfte, H., Jansens, S., De Beuckeleer, M., Dean, C., Zabeau, M., Van Montagu, M., & Leemans, J. (1987). Transgenic plants protected from insect attack. Nature, 328(6125), 33-37. https://doi.org/10.1038/328033a0.
    52. von Tschermak, E. (1900). Über künstliche Kreuzung bei Pisum sativum. Berichte der Deutschen Botanischen Gesellschaft, 18, 232-239. https://doi.org/10.1111/j.1438-8677.1900.tb04903.x.
    53. Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., ... & Zhao, K. (2014). Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLOS ONE, 9(9), e107623.
    54. Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M. D., ... & Hickey, L. T. (2018). Speed breeding is a power-ful tool to accelerate crop research and breeding. Nature Plants, 4(1), 23-29. https://doi.org/10.1038/s41477-017-0083-8.
    55. Weismann, A. (1891). The theory of heredity. Macmillan.
    56. Wolff, C. F. (1759). Theoria generationis. Johann Christian Dieterich.
    57. Wolt, J. D., Wang, K., & Yang, B. (2016). The Regulatory Status of Genome-edited Crops. Plant Biotechnology Journal, 14(2), 510-518. https://doi.org/10.1111/pbi.12444.
    58. Wolt, J. D., Wang, K., Sashital, D., & Lawrence-Dill, C. J. (2016). Achieving plant CRISPR targeting that limits off-target effects. The Plant Genome, 9(3), 1-8.
    59. Zhu, X., Gong, H., Chen, G., Wang, S., Zhang, L., Li, P., ... & Dong, Z. (2016). Metabolomics analysis reveals the mechanism of OsSRFP1-mediated drought tolerance in rice. Scientific Reports, 6, 27157. https://doi.org/10.3835/plantgenome2016.05.0047.
    60. Zohary, D., & Hopf, M. (2000). Domestication of plants in the old world: The origin and spread of cultivated plants in West Asia, Eu-rope, and the Nile Valley. Oxford University Press.
  • Downloads

  • How to Cite

    T, U., E, K. ., Prasad. S, S. ., D, S., Singh. M, G. ., M, N. ., & N, G. (2024). Revolutionizing plant breeding: a historical perspective from cross-pollination to gene editing. International Journal of Biological Research, 11(2), 57-66. https://doi.org/10.14419/2sz7ka92