Evaluation of antimycobacterial rhamnolipid production from non-cytotoxic strains of Pseudomonas aeruginosa isolated from rhizospheric soil of medicinal plants

  • Authors

    • Alok K Mishra Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow
    • Rikesh K Dubey Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow
    • Shivraj M Yabaji Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow
    • Swati Jaiswal Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow
    2016-08-06
    https://doi.org/10.14419/ijbr.v4i2.6429
  • Mycobacteria, Pseudomonas aeruginosa, Rhamnolipids, Rhizospheric soil.
  • Abstract

    Rhamnolipids (RLs) are the bacterial derived biosurfactants and known for a wide range of industrial and therapeutic applications. They exhibit potent anti-bacterial activity against various gram positive, gram negative and acid fast bacteria including Mycobacterium tuberculosis. Since, Pseudomonas is one of the largest known genuses containing a variety of rhamnolipid producing strains. Therefore, in this study, we selectively isolated the Pseudomonas aeruginosa strains from the rhizospheric soil of the Indian plants of medicinal value, e.g. Azadirachta Indica and Ficus spp., and evaluated them for their natural ability to produce antibacterial rhamnolipids. The bacteria were identified on the basis of 16s rRNA sequencing and biochemical characterization. Among 33 of P. aeruginosa isolates from different soil samples, four isolates showed potent inhibitory activity against methicillin resistant Staphylococcus aureus (MRSA) and fast grower mycobacterial spp. The inhibitory potential of the isolates was found to be correlated with their ability to produce RLs in the medium. The industrial viability of the strains was assessed on the basis of cytotoxicity determining alternative allele, exoS/exoU and cell mediated cytotoxicity against murine macrophages J774.1. The newly isolated strains harbor exoS allele and exhibits lower cell mediated cytotoxicity on macrophage cell line as compared to the clinical strains PA-BAA-427 and PA-27853 used as a control in this study.

    Evaluation of antimycobacterial rhamnolipid production from non-cytotoxic strains of Pseudomonas aeruginosa isolated

    from rhizospheric soil of medicinal plants
  • References

    1. [1] Abalos, A., Pinazo, A., Infante, M.R., Casals, M., García, F., Manresa, A. (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17(5), 1367–71, http://dx.doi.org/10.1021/la0011735.

      [2] Ahemad, M., Khan, M.S. (2010) Phosphate-solubilizing and plant-growth-promoting pseudomonas aeruginosa PS1 improves greengram performance in quizalafop-p-ethyl and clodinafop amended soil. Arch. Environ. Contam. Toxicol. 58(2), 361–72, http://dx.doi.org/10.1007/s00244-009-9382-z.

      [3] Baker, G.C., Smith, J.J., Cowan, D.A. (2003) Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods, 541–55, http://dx.doi.org/10.1016/j.mimet.2003.08.009.

      [4] Barry, C.E., Mdluli, K. (1996) Drug sensitivity and environmental adaptation of mycobacterial cell wall components. Trends Microbiol., 275–81, http://dx.doi.org/10.1016/0966-842X(96)10031-7.

      [5] Chiang, C.-Y., Centis, R., Migliori, G.B. (2010) Drug-resistant tuberculosis: past, present, future. Respirology 15(3), 413–32, http://dx.doi.org/10.1111/j.1440-1843.2010.01738.x.

      [6] Cox, C.D., Adams, P. (1985) Siderophore activity of pyoverdin for Pseudomonas aeruginosa. Infect. Immun. 48(1), 130–8, Doi: 0019-9567/85/040130-09$02.00/0.

      [7] Decker, T., Lohmann-Matthes, M.L. (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods 115(1), 61–9, http://dx.doi.org/10.1016/0022-1759(88)90310-9.

      [8] Dettman, J.R., Rodrigue, N., Aaron, S.D., Kassen, R. (2013) Evolutionary genomics of epidemic and nonepidemic strains of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U. S. A. 110(52), 21065–70, http://dx.doi.org/10.1073/pnas.1307862110.

      [9] Diaz, M.H., Hauser, A.R. (2010) Pseudomonas aeruginosa cytotoxin ExoU is injected into phagocytic cells during acute pneumonia. Infect. Immun. 78(4), 1447–56, http://dx.doi.org/10.1128/IAI.01134-09.

      [10] Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J.P., Raoult, D. (2000) 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J. Clin. Microbiol. 38(10), 3623–30.

      [11] Gilmour, J.S.L. (1951) © 1951 Nature Publishing Group. Nature 168, 400–2.http://dx.doi.org/10.1038/168400a0.

      [12] Gross, H., Loper, J.E. (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26(11), 1408–46, http://dx.doi.org/10.1039/b817075b.

      [13] H. Rashedi., E. Jamshidi. (2005) Isolation and production of biosurfactant from Pseudomonas aeruginosa isolated from Iranian southern wells oil . Int. J. Environ. Sci. Tech. 2(2), 121–7.

      [14] Höfte, M., Vos, P.D.E. (2006) Plant pathogenic Pseudomonas species. Plant Associated Bact., 507–33, http://dx.doi.org/10.1007/978-1-4020-4538-7.

      [15] Irie, Y., O’Toole, G.A., Yuk, M.H. (2005) Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiol. Lett. 250(2), 237–43, http://dx.doi.org/10.1016/j.femsle.2005.07.012.

      [16] Kolyva, A., Karakousis, P. (2012) Old and new TB drugs: Mechanisms of action and resistance. Underst. Tuberc. - New Approaches to Fight. Against Drug Resist., 210–32, http://dx.doi.org/10.5772/30992.

      [17] Li, Z.Y., Lang, S., Wagner, F. (1984) Formation and identification of interfacial-active glycolipids from resting microbial cells. Appl. Environ. Microbiol., 610–7.

      [18] Lin, H., Huang, S., Teng, H., Ji, D., Chen, Y., Chen, Y. (2006) Presence of the exoU Gene of Pseudomonas aeruginosa Is Correlated with Cytotoxicity in MDCK Cells but Not with Colonization in BALB / c Mice ᰔ 44(12), 4596–7, http://dx.doi.org/10.1128/JCM.01531-06.

      [19] Magalhães, L., Nitschke, M. (2013) Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control 29(1), 138–42, http://dx.doi.org/10.1016/j.foodcont.2012.06.009.

      [20] Mathee, K., Narasimhan, G., Valdes, C., Qiu, X., Matewish, J.M., Koehrsen, M., Rokas, A., Yandava, C.N., Engels, R., Zeng, E., Olavarietta, R., Doud, M., Smith, R.S., Montgomery, P., White, J.R., Godfrey, P.A., Kodira, C., Birren, B., Galagan, J.E., Lory, S. (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc. Natl. Acad. Sci. U. S. A. 105(8), 3100–5, http://dx.doi.org/10.1073/pnas.0711982105.

      [21] McClure, C.D., Schiller, N.L. (1992) Effects of Pseudomonas aeruginosa Rhamnolipids on Human Monocyte-Derived Macrophages. J. Leukoc. Biol. 51(2), 97–102, Doi: file://Z:ReferencesText Files0000004093.txt.

      [22] Miethke, M., Marahiel, M.A. (2007) Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71(3), 413–51, http://dx.doi.org/10.1128/MMBR.00012-07.

      [23] Mishra, S., Arora, N.K. (2012) Evaluation of rhizospheric Pseudomonas and Bacillus as biocontrol tool for Xanthomonas campestris pv campestris. World J. Microbiol. Biotechnol. 28(2), 693–702, http://dx.doi.org/10.1007/s11274-011-0865-5.

      [24] Nguyen, T.T., Sabatini, D.A. (2011) Characterization and emulsification properties of rhamnolipid and sophorolipid biosurfactants and their applications. Int. J. Mol. Sci., 1232–44, http://dx.doi.org/10.3390/ijms12021232.

      [25] O’Neill, J., By, C., Neill, J.I.M.O., O’Neill, J. (2015) Securing New Drugs for Future Generations: The Pipeline of Antibiotics. Rev. Antimicrob. Resist. (May), 42.

      [26] Preston, G.M. (2004) Plant perceptions of plant growth-promoting Pseudomonas. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359(1446), 907–18, http://dx.doi.org/10.1098/rstb.2003.1384.

      [27] Rahman, K.S.M., Rahman, T.J., McClean, S., Marchant, R., Banat, I.M. (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol. Prog. 18(6), 1277–81, http://dx.doi.org/10.1021/bp020071x.

      [28] Sato, H., Frank, D.W. (2004) ExoU is a potent intracellular phospholipase. Mol. Microbiol., 1279–90, http://dx.doi.org/10.1111/j.1365-2958.2004.04194.x.

      [29] Sharma, D., Tyagi, J.S. (2007) The value of comparative genomics in understanding mycobacterial virulence: Mycobacterium tuberculosis H37Ra genome sequencing - A worthwhile endeavour. J. Biosci., 185–9, http://dx.doi.org/10.1007/s12038-007-0018-z.

      [30] Shaver, C.M., Hauser, A.R. (2004) Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect. Immun. 72(12), 6969–77, http://dx.doi.org/10.1128/IAI.72.12.6969-6977.2004.

      [31] Soberón-Chávez, G., Lépine, F., Déziel, E. (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 718–25, http://dx.doi.org/10.1007/s00253-005-0150-3.

      [32] Soberón-Chávez, G., Lépine, F., Déziel, E. (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 718–25, http://dx.doi.org/10.1007/s00253-005-0150-3.

      [33] Strateva, T., Yordanov, D. (2009) Pseudomonas aeruginosa - A phenomenon of bacterial resistance. J. Med. Microbiol., 1133–48, http://dx.doi.org/10.1099/jmm.0.009142-0.

      [34] Walker, T.S., Bais, H.P., Déziel, E., Schweizer, H.P., Rahme, L.G., Fall, R., Vivanco, J.M. (2004) Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol. 134(1), 320–31, http://dx.doi.org/10.1104/pp.103.027888.

      [35] [35] Wehmhöner, D., Häussler, S., Tümmler, B., Jänsch, L., Bredenbruch, F., Wehland, J., Steinmetz, I. (2003) Inter- and intraclonal diversity of the Pseudomonas aeruginosa proteome manifests within the secretome. J. Bacteriol. 185(19), 5807–14, http://dx.doi.org/10.1128/JB.185.19.5807-5814.2003.

      [36] Woese, C.R., Fox, G.E. (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. U. S. A. 74, 5088–90, http://dx.doi.org/10.1073/pnas.74.11.5088.

  • Downloads

    Additional Files

  • How to Cite

    Mishra, A. K., Dubey, R. K., Yabaji, S. M., & Jaiswal, S. (2016). Evaluation of antimycobacterial rhamnolipid production from non-cytotoxic strains of Pseudomonas aeruginosa isolated from rhizospheric soil of medicinal plants. International Journal of Biological Research, 4(2), 112-118. https://doi.org/10.14419/ijbr.v4i2.6429

    Received date: 2016-06-28

    Accepted date: 2016-07-25

    Published date: 2016-08-06