Attenuation of microbial-induced deterioration of cellu-lose fibers by hornwort (Ceratophyllum demersum L.) methanolic extract

  • Authors

    • Ali Mohamedomar Faculty of Archaeology, Aswan University
    • Ayman Taha Salah
    • Amal A. A. Mohamed
    • Mohamed G. Sheded
    2017-11-26
    https://doi.org/10.14419/ijbr.v5i2.8479
  • Ceratophyllumdemersum, Antimicrobial Activity, Secondary Metabolites, Cellulose Fiber.
  • Plants are endowed by a variety of secondary metabolites, which have potent antimicrobial activity to treat vulnerable subjects against microbial-induced damage. In this study, bacteria and fungi were isolated from the infected manuscript dated back to 8th century AHkeptatAl-Azhar library in Cairo, Egypt. The material of that manuscript was made from cellulose fibers.

    Three bacterial species, Bacillus subtilis, Bacillusmegatrium and Streptomyces spanned five fungal species, Aspergillusnispecies. Aspergillusniger, The antibacterial and antifungal activities of methanolic extracts of stems and leaves of Ceratophyllumdemersum were evaluated using agar well diffusion technique. The results showed remarkable inhibition ingrowth of isolatedbacteria and fungitreated with the plant extracts.

    In addition, treating of the modern Ractapapers with Ceratophy llumdemersum extracts resulted in ameliorating physical and mechanica lproperties of the papers. Moreover, against microbial attack of Racta papers was increased after treating with Ceratophy llumdemersum extract.

  • References

    1. [1] AbuZiada, E., Mashaly, A., Abd El-Monem, M., Torky, M.( 2008). Economic potentialities of some aquatic plants growing in north east Nile Delta. Egypt Journal of Applied Science 8, 1395–1405. https://doi.org/10.3923/jas.2008.1395.1405.

      [2] Ajuong, E.-M.A., Breese, M.C. (1998). Fourier transform infrared characterization of Pai wood (Afzeliaafricana Smith) extractives. HolzRohWerkst.56, 139e142.

      [3] Aluong, E.-M.A., Redington, M. (2004). Fourier transform infrared analyses of Bogand Modern Oak wood (Quercuspetraea) extractives. Wood Sci. Technol. 38,181e190.

      [4] Bhosale, S.H., Jagtap, T.G., Naik, C.G. (1999). Antifungal activity of some marine organisms from India, against food spoilage Aspergillusstrains.Mycopathologica 147, 133–138. https://doi.org/10.1023/A:1007184003971.

      [5] Bokhare, N. (1997). Conservation of Manuscripts: Prevention is Betterthan Cure- Conservation of Cultural Property in India. Vol 30. New Delhi: p52-63

      [6] Bushmann, P., Ailstock, M. S. (2006). Antibacterial compounds in estuarine submersed aquatic plants. Journal of Experimental Marine Biology and Ecology 331(1):41-50· https://doi.org/10.1016/j.jembe.2005.10.005.

      [7] Chow, S.-Z., 1971. Infrared spectral characteristics and surface inactivation of wood at high temperatures. Wood Sci. Technol. 5, 27e39.

      [8] El-Hadidi, M. N. (1971). Distribution of Cyperuspapyrus and Nymphaealotus in inland water of Egypt.MitteilungenMünchenerBotanischeStaatssammlungen 10: 470–475.

      [9] Fareed, M.F., Haroon, A.M., Rabh, S.A. (2008). Antimicrobial activity of some macrophytesfrom Lake Manzalah (Egypt). Pakistan Journal of Biological Sciences 11 (21), 2454–2463. https://doi.org/10.3923/pjbs.2008.2454.2463.

      [10] Kaarakainen P, Rintala H, Vepsalainen A, Hyvarinene A, Nevalainen A, Meklin T. (2009) Microbial content of house dust samples determined with qPCR. Sci Total Environ 407:4673–4680 https://doi.org/10.1016/j.scitotenv.2009.04.046.

      [11] Li, F., Hu, H. (2005). Isolation and characterization of a novel antialgalallelochemical from Phragmitescommunis. Applied and Environmental Microbiology 71 (11), 6545–6553. https://doi.org/10.1128/AEM.71.11.6545-6553.2005.

      [12] Lord NS, Kaplan CW, Shank P, Kitts CL, Elrod SL. (2002)Assessment of fungal diversity using terminal restriction fragmentpattern analysis: comparison of 18S and ITS ribosomal regions.FEMS MicrobiolEcol 42:327–337 https://doi.org/10.1111/j.1574-6941.2002.tb01022.x.

      [13] Malathy, R. and Shaleesha, A. S. (2015). Studies on the potential therapeutic effects on the aquatic macrophytes namely Cabombaaquatica, Ceratophyllumdemersum and Hygrophilacorymbosa. Journal of Chemical and Pharmaceutical Research 7(4):479-483.

      [14] Majid, H., Yousuf, T., Ahmad, J., Wanganeo, A. and Raghuvanshi, S. (2017). Antibacterial Activity of some Macrophytes against Fish Pathogens. International Journal of Scientific and Research Publications7 (3):135-137.

      [15] Micheluz, A., Manente, S., Tigini, V., Prigione, V., Pinzari, F., Ravagnan, G., Varese, G. C. (2015). The extreme environment of a library: Xerophilic fungi inhabiting indoor niches. International Biodeterioration& Biodegradation 99, 1-7. https://doi.org/10.1016/j.ibiod.2014.12.012.

      [16] Naji, K. M; Abdullah, Q.Y.M; AL-Zaqri, A. Q.M and Alghalibi, S. M. (2014).Evaluating the Biodeterioration Enzymatic Activitiesof Fungal Contamination Isolated from Some Ancient Yemeni Mummies Preserved in the National Museum. Biochemistry Research International, 13: 1- 9. https://doi.org/10.1155/2014/481508.

      [17] NIST/EPA/NIH, May. (2011). Mass Spectral Library (NIST 11) and NIST Mass Spectral Search Program (Version 2.0g).

      [18] Nuopponen, M., Vuorinen, T., Viitaniemi, P., J€ams€a, S. (2003). Effects of heat treatmenton the behaviour of extractives in softwood studied by FTIR spectroscopic methods. Wood Sci. Technol. 37, 109e115. https://doi.org/10.1007/s00226-003-0178-4.

      [19] Nuopponen, M. (2005). FT-IR-and UV Raman spectroscopic studies on thermal (modification of Scots pine wood and its extractable Compounds.Abstract ofDoctoral Dissertation. Helsinki Univ. Technol. Lab. For. Prod. Chem. Rep. Ser.A23, 1e29.

      [20] Oberacher, H. (2011). Wiley Registry of Tandem Mass Spectral Data, MSforID. John Wiley & Sons Inc, Hoboken.

      [21] Pasquariello, G., Velenti, P., Maggi, O., and Persiani, A. M.( 2005). Paper, In Plant Biology forCultural Heritage: Biodeterioration and Conservation (Ed. Giulia Caneva, Maria PiaNuggari, OrnellaSalvadori), 108-110.

      [22] Prasad, L. K. (1995). Protection of Documents from Photo Chemical Effects of Light-CCPI, vol-28, New Delhi: p45-49

      [23] Santos, P.R.V.; Oliveira, A.C.X.; Tomassini, T.C.B. (1995) .Controlemicrobiógico de produtosfitoterápicos. Rev. Farm. Bioquím. 31, 35-38.

      [24] Saxena, G.; McCutcheon, A.R.; Farmer, S.; Towers, G.H.N.; Hancock, R.E.W. (1994). Antimicrobial constituents of Rhusglabra.J.Ethnopharmacol. 42, 95-99. https://doi.org/10.1016/0378-8741(94)90102-3.

      [25] Szczepanowska, H., Cavaliere, A.R. (2000). Fungal deterioration of 18thand 19th century documents: a case study of the TilghmanFamilyCollection, Wye House, Easton, Maryland. International Biodeterioration& Biodegradation 46, 245–249. https://doi.org/10.1016/S0964-8305(00)00061-5.

      [26] ShaikD, Malika FA, Rafi SM, Naqui B. (1994).Studies of antibacterial activity of ethanolic extract from Nericumindicum and Hibiscus rosasinensis. J Islamic Acad Sci.; 7: 167–8.

      [27] Shaltout, K. H., A. Sharaf El-Din & M. A. El-Sheikh. (1994). Species richness and phenology of vegetation along the irrigated canals and drains in the Nile Delta, Egypt. Vegetation 112: 35–43. https://doi.org/10.1007/BF00045098.

      [28] Shin, W.J., Lee, K.H., Park, M.H., Seong, B.L. (2010). Broad-spectrum antiviral effects of Agrimoniapalosa extract on influenza viruses. Microbiology and Immunology 54, 11–19. https://doi.org/10.1111/j.1348-0421.2009.00173.x.

      [29] Springuel, I. V. & K. T. Murphy. (1991). Euhydrophyte communities of the River Nile and its impoundments in Egyptian Nubia.Hydrobiologia 210: 35–47. https://doi.org/10.1007/BF00006416.

      [30] Sridevi, M., Rao, Kondala, Sathiraju, D. (2010). Sensitivity of bacteria isolated from Champavathi Estuary to some medicinal plants of Vizianagaram district, East coast of India. Drug Invention Today 2 (7), 366–368.

      [31] Tackholm, V. V. (1974). Students’ Flora of Egypt, 2nd edition, Cairo University Publ.,Cooperative Printing Company, Beirut; 888.

      [32] Yi, Y., Yi, L., Yin, Y., Zhang, H., Wang, G. (2012). The ant algal activity of 40 medicinal plants against Microcystisaeruginosa. Journal of Applied Phycology 24 (4), 847–856. https://doi.org/10.1007/s10811-011-9703-2.

      [33] Zahran M.A. (2009).Hydrophytes of the Nile in Egypt. In: Dumont H.J. (eds) The Nile. MonographiaeBiologicae, vol 89.Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9726-3_22.

  • Downloads

  • How to Cite

    Mohamedomar, A., Salah, A. T., Mohamed, A. A. A., & Sheded, M. G. (2017). Attenuation of microbial-induced deterioration of cellu-lose fibers by hornwort (Ceratophyllum demersum L.) methanolic extract. International Journal of Biological Research, 5(2), 48-58. https://doi.org/10.14419/ijbr.v5i2.8479