Hematological status of rats (Rattus norvegicus L.) in the lactation period after giving supplements organic quail eggs

  • Authors

    • Hasan Basri Diponegoro University
    • Tyas Rini Saraswati Diponegoro University
    • Sri Isdadiyanto Diponegoro University
    2018-02-25
    https://doi.org/10.14419/ijbr.v6i1.9181
  • Hematological Status, Rattus norvegicus L., Organic Quail Eggs.
  • Organic quail eggs contain high nutrients and low cholesterol, so it is needed in the process of hematopoiesis that occurs in the bone marrow. The purpose of this study was to determine hematological status of rat (Rattus norvegicus L.) in the period of lactation after supplementation of organic quail eggs. This study is an experimental study using a completely randomized design with 4 treatments and 5 replications. Some treatments applied are: T0: Control; T1: The lactation period of (Rattus norvegicus L.) with giving quail eggs supplement of commercial feed; T2: The lactation period of (Rattus norvegicus L.) with giving quail eggs supplement of standard organic feed; T3: The lactation period of (Rattus norvegicus L.) with giving quail eggs supplement of given organic feed. The results showed that feed intake, weight femur, long bone of the femur, erythrocytes, and hemoglobin levels were not significantly different (p > 0.05), blood pH significantly different (p < 0.05). Supplementation of organic quail eggs could be maintain the condition hematological status of erythrocytes, hemoglobin and blood pH in the lactation period of (Rattus norvegicus L.).

  • References

    1. [1] Addass, P.A., David, D.L., Edward, A., Zira, K.E. and Midau, A. (2012). Effect of age, sex and management system on some haematological parameters of intensively and semi-intensively kept chicken in mubi, adamawa state, Nigeria. Iranian Journal of Applied Animal Science. 2: 277-282.

      [2] Chakravorty, D.K., Parker, T.R., Guerra, A.J., Sherrill, C.D., Giedroc, D.P. and Merz, K.M. Jr. (2013). Energetics of zinc-mediated interactions in the allosteric pathways of metal sensor proteins. J. Am. Chem. Soc. 135, 30-33. https://doi.org/10.1021/ja309170g.

      [3] Cunningham, F.G., Gant, N.F., Leveno, K.J., Gilstrap, III. L. C., Hauth, J.C. and Wenstrom K D. (20050. Williams Obstetrics. 22th ed. New York, NY, USA: McGraw-Hill Medical Publishing Division. pp. 39-151.

      [4] Fang, K-F., Chen, Z-J., Liu, M., Wu, P-S. and Yu, D-Z. (2015). Blood pH in coronary artery microthrombosis of rats. Asian Paciï¬c Journal of Tropical Medicine. 8: 864-869. http://doi.10.1016/j.apjtm.2015.09.015.

      [5] Félix-Redondo, F.J., Grau, M. and Fernández-Bergés, D. (2013). Cholesterol and cardiovascular disease in the elderly. Facts and gaps. Aging and Disease. 4: 154-169.

      [6] Gropper, S.S., Smith, J.L. and Groff, J.L. (2005). Advanced Nutrition and Human Metabolism. 4th ed. Wardsworth, USA: Publisher Wadsworth.

      [7] Higgins, T., Beutler, E. and Doumas, B.T. (2008). Measurement of haemoglobin in blood. In: Burtis C A, Ashwood E R, Bruns D E, editors. Tietz Fundamentals of Clinical Chemistry. 6th ed. Missouri: Saunders Elsevier. pp. 514-515.

      [8] Hoffbrand, A.V., Moss, P.A.H. and Pettit, J.E. (2008). Erythropoiesis and general aspects of anemia. In: Hoffbrand AV, Moss PAH, Pettit JE. Essential Haematology. Wiley-Blackwell. pp. 12-27.

      [9] Hubrecht, R. and Kirkwood J. (2010). The UFAW handbook of the care and management of laboratory and other research animals. Issue-8. University Federation for Animal Welfare. pp. 311-324. https://doi.org/10.1002/9781444318777.

      [10] Ihedioha, J.I., Ugwuja, J.I., Noel-Uneke, O.A., Udeani, I.J. and Daniel-Igwe, G. (2012). Reference values for the haematology profile of conventional grade outbred albino mice (Mus musculus) in Nsukka, Eastern Nigeria. ARI. 9:1601-1612.

      [11] Krinke, G.J. (2000). The Laboratory Rat. The Handbook of Experimental Animals. 1st ed. Novartis Corporation, Stein, Switzerland: Academic Press. pp. 3-56.

      [12] Kullisaar, T., Zilmer, M., Mikelsaar, M., Vilhelm, T., Annuk, H., Kamane, C. and Klik, A. (2001). Two antioxidant Lactobacilli strains as promising probiotics. Food Microbiol J. 72:215-224. https://doi.org/10.1016/S0168-1605(01)00674-2.

      [13] Linder, M.C. (1991). Nutritional Biochemistry and Metabolism with Clinical Application. 2nd ed. Prentice-Hall Int. pp. 119-225.

      [14] Lindstrom, N.M., Zimmerman, K., Moore, D.M. and Smith, S.A. (2015). Hematologic assessment in pet rats, mice, hamsters, and gerbils blood sample collection and blood cell identification. Clin. Lab. Med 35: 629-640.

      [15] Njoya, H.K., Ofusori, D.A., Nwangwu, S.C., Amegor, O.F., Akinyeye, A.J. and Abayomi, T.A. (2009). Histopathological effect of exposure of formaldehyde vapour on the trachea and lung of adult wistar rats. International Journal of Integrative Biology 7: 160-165.

      [16] NseAbasi N E, Mary E W, Uduak A, Edem E A O. (2014). Haematological parameters and factors affecting their values. Agricultural Science 2, 37-47. https://doi.org/10.12735/as.v2i1p37.

      [17] Palis, J. and Yoder, M.C. (2001). Yolk-sac hematopoiesis: The first blood cells of mouse and man. Experimental Hematology 29: 927-936.

      [18] Parasuraman, S., Raveendran, R., Kesavan, R. (2010). Blood sample collection in small laboratory animals. J. Pharmacol Pharmacother 1:87-93.

      [19] Picciano, M.F. (2003). Pregnancy and Lactation: Physiological Adjustments, Nutritional Requirements and the Role of Dietary Supplements. J. Nutr. 133(6): 1997S-2002S. https://doi.org/10.1093/jn/133.6.1997S.

      [20] Sadowska, J. and Kuchlewska, M. (2011). Effect of diet composition and mixture of selected food additives on the erythrocytic system and iron metabolism in peripheral blood of male rats. Acta Scientiarum Polonorum, Technologia Alimentaria. 10: 497-506.

      [21] Saraswati, T.R. and Tana, S. (2016). Effect of turmeric powder supplementation to the age of sexual maturity, physical, and chemical quality of the first japanese quail’s (coturnix japonica) egg. Biosaintifika. 8: 18-24. https://doi.org/10.15294/biosaintifika.v8i1.4982.

      [22] Stadelman W J and Cotteril O J. (1995). Egg Science and Technology. 4th ed. New York, NY, USA: Food Products Press.

      [23] Suripta, H. and Astuti, P. (2016). The effects of sardine and palm oil in rations on the ratio of omega-3 to omega-6 fatty acids in eggs of coturnix coturnix japonica. J. Indon. Trop. Anim. Agric. 32: 22-27.

      [24] Thrall, M. A. and Weiser, M. G. (2002). Haematology. In: Hendrix CM. Laboratory Procedures for Veterinary Technicians. 4th ed. Mosby Incorporated, USA: Missouri. pp. 29-74.

      [25] Togun, V.A., Oseni, B.S.A., Ogundipe, J.A, Arewa, T.R., Hammed, A.A., Ajonijebu, D.C. and Mustapha, F. (2007). Effects of chronic lead administration on the haematological parameters of rabbit – a preliminary study. In: Proceedings of the 41st Conference of the Agriculural Society of Nigeria. p. 341.

      [26] Tras, B., Inal, F., Bas, A.L., Altunok, V., Elmas, M. and Yazar, E. (2000). Effects of continuous supplementations of ascorbic acid, aspirin, vitamin E and selenium on some haematological parameters and serum superoxide dismutase level in broiler chickens. British Poultry Science. 41:664-666. https://doi.org/10.1080/00071660020009225.

      [27] Urasoko, Y., He, X., Masao, T., Kinoshita, Y., Edamoto, H., Hatayama, K., Asano, Y., Tamura. K. and Mochizuki, M. (2012). Changes in blood parameters and the expression of coagulation-related genes in lactating sprague–dawley rats. Journal of the American Association for Laboratory Animal Science. 51: 144-149.

      [28] William, E and Mitch. (2002). Insights into the abnormalities of chronic renal disease Attributed to malnutrition. Journal of the American Society of Nephrology. 13: S22-S27.

  • Downloads

  • How to Cite

    Basri, H., Rini Saraswati, T., & Isdadiyanto, S. (2018). Hematological status of rats (Rattus norvegicus L.) in the lactation period after giving supplements organic quail eggs. International Journal of Biological Research, 6(1), 1-4. https://doi.org/10.14419/ijbr.v6i1.9181