Controllability, Observability and Stability of Volterra Type Non-Linear Matrix Integro-Dynamic System on Time Scales

Authors

  • G V. Ramana

  • G V. S. R. Deekshitulu

Received date: August 25, 2018

Accepted date: August 25, 2018

Published date: August 24, 2018

DOI:

https://doi.org/10.14419/ijet.v7i3.31.18278

Keywords:

Controllability, non-linear Volterra type matrix integro-dynamic system, observability, stability, time scales.

Abstract

This paper investigates the controllability, observability and stability of the solution of Volterra type non linear matrix integro dynamic system on time scales.

 

 

References

  1. [1] M. Adivar, “Principal matrix solution and variation of

    parameters for Volterra integro-dynamic equations on time

    scalesâ€, Glasg. Math. J, Vol.53, (2011), pp.463-480.

    [2] L.C. Becker, “Principal matrix solutions and variation of parameters for a for Volterra-integro-differential equation and

    its adjointâ€, Electron J Qual Theory Differ Equ, Vol.14,

    (2006), pp.1-22.

    [3] M. Bohner, A. Peterson, Dynamic Equations on Time Scales,

    Birkhauser, Boston, (2001).

    [4] T.A. Burton, W.E. Mahfound, “Stability criteria for Volterra

    equationsâ€,Trans Am Math Soc Vol.279, (1983), pp.143-174.

    [5] T.A. Burton, W.E. Mahfound, “Stability by decompositions

    for Volterra equationsâ€, Tohoku Math J JI Ser Vol.37, (1985),

    pp.489-511.

    [6] T.A. Burton, Volterra integral and differential equations, 2nd

    edn. Elsevier, (2005).

    [7] J.M. Davis, I.A. Gravagne, B.J.Jackson, R.J. Marks,

    “Controllability, observability, realizability, and stability of

    dynamic linear systemsâ€, Electron J Differ Equ Vol.37,

    (2009), pp.1-32.

    [8] S. Hilger, Ein Mabkettenkalkul mit Anwendung auf

    Zentrumsmannigfaltigkeiten, PhD thesis, Universitat

    Wurzburg, (1988).

    [9] IA. Gravagne, JM. Devis and JJ. Dacunha, “A unified

    approach to high-gain adaptive controllersâ€, J.Abstr Appl

    Anal, (2009).

    [10] IA. Gravagne, JM. Devis and JJ. Dacunha, RJ II. Marks,

    “Bandwidth reduction for controller area networks using

    adaptive samplingâ€, New Orleans, (2004), pp.5250-5255.

    [11] IA. Gravagne, JM. Devis and RJ II. Marks, “How

    deterministic must a real time controllerâ€,Alberta, (2005),

    pp.3856-3861.

    [12] R.E. Kalman, “On the general theory of control

    systemâ€,Proc.1st IFAC Congress Automatic control Vol.1,

    (1960), pp.481-492.

    [13] R.E. Kalman, Y.C. Ho, K.S. Narendra, “Controllability of

    linear dynamical systemsâ€,Contrib. Differ. Equ Vol.1,

    (1963), pp.189-213.

    [14] RJ II. Marks, IA. Gravagne, JM. Devis and JJ. Dacunha,

    “Nonregressivity in switching linear circuits and mechanical

    systemsâ€,Math Comput Model Vol.43, (2006), p.1383-1392.

    [15] J. Seiffert, S. Sanyal, DC. Wunsch,“Hamilton –Jacobi

    -Bellman equations and approximate dynamic programming

    • on time scalesâ€,IEEE Trans Syst Man Cybern Vol.38, (2008),

    pp.918-923.

    [16] A. Yonus, Ghaus ur Rahman, “Controllability, Observability,

    and Stability of a Volterra integro-dynamic system on time

    scalesâ€,IEEE Trans Syst Man Cybern Vol.20, (2014),

    pp.383-402.

Downloads

How to Cite

V. Ramana, G., & V. S. R. Deekshitulu, G. (2018). Controllability, Observability and Stability of Volterra Type Non-Linear Matrix Integro-Dynamic System on Time Scales. International Journal of Engineering and Technology, 7(3.31), 115-120. https://doi.org/10.14419/ijet.v7i3.31.18278

Received date: August 25, 2018

Accepted date: August 25, 2018

Published date: August 24, 2018