Atherosclerotic disease and diabetes mellitus

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    The macro-vascular complications (cardiovascular, neurovascular and peripheral vascular diseases) observed in diabetic patients usually develop secondary to the presence of atherosclerotic diseases. In diabetic patients chronically elevated blood glucose levels play a major role in contributing to the development of the disease; however, in addition to hyperglycaemia, other factors such as hypertension, dyslipidaemia and obesity also contribute to the development of this condition. Despite the fact that further research is required to fully establish the relationship between hyperglycaemia and the development of atherosclerotic plaques in diabetic patients, three major pathways have already been identified for the role they play in the pathogenesis of atherosclerosis. These pathways are identified as follows: 1. non-enzymatic glycosylation of lipids and proteins 2. oxidative stress 3.Protein kinase C. This review discusses how hyperglycaemia influences the development of atherosclerosis which further leads to the development of major vascular complications in diabetic patients.

     


  • Keywords


    Atherosclerosis; Diabetes Mellitus (DM); Hyperglycaemia.

  • References


      [1] Alberti, K. G. M. M., & Zimmet, P. Z. (1998). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabetic Medicine, 15(7), 539–553. https://doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S.

      [2] Aronson, D., & Rayfield, E. J. (2002). How hyperglycemia promotes atherosclerosis: Molecular mechanisms. Cardiovascular Diabetology, 1(1), 1. https://doi.org/10.1186/1475-2840-1-1.

      [3] Association, A. D. (2010). Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 33(Suppl 1), S62. https://doi.org/10.2337/dc10-S062.

      [4] Aubert, R. (1995). Diabetes in America. DIANE Publishing.

      [5] Baumgartner-Parzer, S. M., Wagner, L., Pettermann, M., Grillari, J., Gessl, A., & Waldhäusl, W. (1995). High-glucose–triggered apoptosis in cultured endothelial cells. Diabetes, 44(11), 1323–1327. https://doi.org/10.2337/diab.44.11.1323.

      [6] Beckman, J. A., Creager, M. A., & Libby, P. (2002). Diabetes and atherosclerosis: Epidemiology, pathophysiology, and management. Jama, 287(19), 2570–2581. https://doi.org/10.1001/jama.287.19.2570.

      [7] Blonde, L. (2010). Current antihyperglycemic treatment guidelines and algorithms for patients with type 2 diabetes mellitus. The American Journal of Medicine, 123(3), S12–S18. https://doi.org/10.1016/j.amjmed.2009.12.005.

      [8] Control, D., & Group, C. T. R. (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New England Journal of Medicine, 329(14), 977–986. https://doi.org/10.1056/NEJM199309303291401.

      [9] Davies, M. G., & Hagen, P.-O. (1993). The vascular endothelium. A new horizon. Annals of Surgery, 218(5), 593. https://doi.org/10.1097/00000658-199321850-00003.

      [10] Deshpande, A. D., Harris-Hayes, M., & Schootman, M. (2008). Epidemiology of Diabetes and Diabetes-Related Complications. Physical Therapy, 88(11), 1254. https://doi.org/10.2522/ptj.20080020.

      [11] Diabetes in America, 3rd Edition | NIDDK. (n.d.). National Institute of Diabetes and Digestive and Kidney Diseases. Retrieved 8 September 2019, from https://www.niddk.nih.gov/about-niddk/strategic-plans-reports/diabetes-in-america-3rd-edition.

      [12] Djaberi, R., Schuijf, J. D., de Koning, E. J., Rabelink, T. J., Smit, J. W., Kroft, L. J. M., Pereira, A. M., Scholte, A. J., Spaans, M., Romijn, J. A., de Roos, A., van der Wall, E. E., Jukema, J. W., & Bax, J. J. (2009). Usefulness of carotid intima-media thickness in patients with diabetes mellitus as a predictor of coronary artery disease. The American Journal of Cardiology, 104(8), 1041–1046. https://doi.org/10.1016/j.amjcard.2009.06.004.

      [13] Elnady, B. M., & Saeed, A. (2017). Peripheral Vascular Disease: The Beneficial Effect of Exercise in Peripheral Vascular Diseases Based on Clinical Trials. Advances in Experimental Medicine and Biology, 1000, 173–183. https://doi.org/10.1007/978-981-10-4304-8_11.

      [14] Fowler, M. J. (2008). Microvascular and Macrovascular Complications of Diabetes. Clinical Diabetes, 26(2), 77–82. https://doi.org/10.2337/diaclin.26.2.77.

      [15] Gerrity, R. G., Natarajan, R., Nadler, J. L., & Kimsey, T. (2001). Diabetes-induced accelerated atherosclerosis in swine. Diabetes, 50(7), 1654–1665. https://doi.org/10.2337/diabetes.50.7.1654.

      [16] Giardino, I., Edelstein, D., & Brownlee, M. (1996). BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells. The Journal of Clinical Investigation, 97(6), 1422–1428. https://doi.org/10.1172/JCI118563.

      [17] Grundy Scott M., Benjamin Ivor J., Burke Gregory L., Chait Alan, Eckel Robert H., Howard Barbara V., Mitch William, Smith Sidney C., & Sowers James R. (1999). Diabetes and Cardiovascular Disease. Circulation, 100(10), 1134–1146. https://doi.org/10.1161/01.CIR.100.10.1134.

      [18] Haffner, S. M., Lehto, S., Rönnemaa, T., Pyörälä, K., & Laakso, M. (1998). Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New England Journal of Medicine, 339(4), 229–234. https://doi.org/10.1056/NEJM199807233390404.

      [19] Henry, W. L. (1987). The Complications of Diabetes Mellitus. Journal of the National Medical Association, 79(6), 677–680.

      [20] Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). (1998). The Lancet, 352(9131), 837–853. https://doi.org/10.1016/S0140-6736(98)07019-6.

      [21] Jude, E. B., Eleftheriadou, I., & Tentolouris, N. (2010). Peripheral arterial disease in diabetes—A review. Diabetic Medicine, 27(1), 4–14. https://doi.org/10.1111/j.1464-5491.2009.02866.x.

      [22] Kanter, J. E., Johansson, F., LeBoeuf, R. C., & Bornfeldt, K. E. (2007). Do glucose and lipids exert independent effects on atherosclerotic lesion initiation or progression to advanced plaques? Circulation Research, 100(6), 769–781. https://doi.org/10.1161/01.RES.0000259589.34348.74.

      [23] Mahgoub, M. A., & Abd-Elfattah, A. S. (1998). Diabetes mellitus and cardiac function. Molecular and Cellular Biochemistry, 180(1–2), 59–64. https://doi.org/10.1023/A:1006834922035.

      [24] McGill, H. C., & McMahan, C. A. (1998). Determinants of atherosclerosis in the young. American Journal of Cardiology, 82(10), 30–36. https://doi.org/10.1016/S0002-9149(98)00720-6.

      [25] Nathan, D. M. (1993). Long-term complications of diabetes mellitus. New England Journal of Medicine, 328(23), 1676–1685. https://doi.org/10.1056/NEJM199306103282306.

      [26] Nesto, R. W. (2004). Correlation between cardiovascular disease and diabetes mellitus: Current concepts. The American Journal of Medicine, 116(5), 11–22. https://doi.org/10.1016/j.amjmed.2003.10.016.

      [27] Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M. A., Beebe, D., Oates, P. J., & Hammes, H.-P. (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404(6779), 787. https://doi.org/10.1038/35008121.

      [28] Papatheodorou, K., Papanas, N., Banach, M., Papazoglou, D., & Edmonds, M. (2016). Complications of Diabetes 2016. Journal of Diabetes Research, 2016, 6989453. https://doi.org/10.1155/2016/6989453.

      [29] Poredos, P., Poredos, P., & Jezovnik, M. K. (2018). Structure of Atherosclerotic Plaques in Different Vascular Territories: Clinical Relevance. Current Vascular Pharmacology, 16(2), 125–129. https://doi.org/10.2174/1570161115666170227103125.

      [30] Reusch, J. E. (2003). Diabetes, microvascular complications, and cardiovascular complications: What is it about glucose? The Journal of Clinical Investigation, 112(7), 986–988. https://doi.org/10.1172/JCI200319902.

      [31] Rischen-Vos, J., van der Woude, F. J., Tegzess, A. M., Zwinderman, A. H., Gooszen, H. C., van den Akker, P. J., & van Es, L. A. (1992). Increased morbidity and mortality in patients with diabetes mellitus after kidney transplantation as compared with non-diabetic patients. Nephrology Dialysis Transplantation, 7(5), 433–437. https://doi.org/10.1093/oxfordjournals.ndt.a092162.

      [32] Ross, R. (1988). Endothelial injury and atherosclerosis. In Endothelial cell biology in health and disease (pp. 371–384). Springer. https://doi.org/10.1007/978-1-4613-0937-6_17.

      [33] Saito, I., Folsom, A. R., Brancati, F. L., Duncan, B. B., Chambless, L. E., & McGovern, P. G. (2000). Nontraditional risk factors for coronary heart disease incidence among persons with diabetes: The Atherosclerosis Risk in Communities (ARIC) Study. Annals of Internal Medicine, 133(2), 81–91. https://doi.org/10.7326/0003-4819-133-2-200007180-00007.

      [34] Spector, K. S. (1998). Diabetic cardiomyopathy. Clinical Cardiology, 21(12), 885–887. https://doi.org/10.1002/clc.4960211205.

      [35] Stamler, J., Vaccaro, O., Neaton, J. D., Wentworth, D., & The Multiple Risk Factor Intervention Trial Research Group. (1993). Diabetes, Other Risk Factors, and 12-Yr Cardiovascular Mortality for Men Screened in the Multiple Risk Factor Intervention Trial. Diabetes Care, 16(2), 434–444. https://doi.org/10.2337/diacare.16.2.434.

      [36] Stehouwer, C. D., Lambert, J., Donker, A. J. M., & van Hinsbergh, V. W. (1997). Endothelial dysfunction and pathogenesis of diabetic angiopathy. Cardiovascular Research, 34(1), 55–68. https://doi.org/10.1016/S0008-6363(96)00272-6.

      [37] Stone, P. H., Muller, J. E., Hartwell, T., York, B. J., Rutherford, J. D., Parker, C. B., Turi, Z. G., Strauss, H. W., Willerson, J. T., Robertson, T., Braunwald, E., & Jaffe, A. S. (1989). The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: Contribution of both coronary disease and diastolic left ventricular dysfunction to the adverse prognosis. Journal of the American College of Cardiology, 14(1), 49–57. https://doi.org/10.1016/0735-1097(89)90053-3.

      [38] Williams, S. B., Cusco, J. A., Roddy, M.-A., Johnstone, M. T., & Creager, M. A. (1996). Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. Journal of the American College of Cardiology, 27(3), 567–574. https://doi.org/10.1016/0735-1097(95)00522-6.

      [39] Wilson, P. W. (1998). Diabetes mellitus and coronary heart disease. American Journal of Kidney Diseases, 32(5), S89–S100. https://doi.org/10.1053/ajkd.1998.v32.pm9820468.

      [40] Wilson Peter W. F., D’Agostino Ralph B., Levy Daniel, Belanger Albert M., Silbershatz Halit, & Kannel William B. (1998). Prediction of Coronary Heart Disease Using Risk Factor Categories. Circulation, 97(18), 1837–1847. https://doi.org/10.1161/01.CIR.97.18.1837.

      [41] Wingard, D. L., Barrett-Connor, E. L., Scheidt-Nave, C., & McPhillips, J. B. (1993). Prevalence of Cardiovascular and Renal Complications in Older Adults With Normal or Impaired Glucose Tolerance or NIDDM: A population-based study. Diabetes Care, 16(7), 1022–1025. https://doi.org/10.2337/diacare.16.7.1022.

      [42] Zheng, L.-Y., Xu, X., Wan, R.-H., Xia, S., Lu, J., & Huang, Q. (2019). Association between serum visfatin levels and atherosclerotic plaque in patients with type 2 diabetes. Diabetology & Metabolic Syndrome, 11(1), 60. https://doi.org/10.1186/s13098-019-0455-5.


 

View

Download

Article ID: 30213
 
DOI: 10.14419/ijm.v8i1.30213




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.