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Abstract 
 

This paper investigates the new exact solutions of the three nonlinear time fractional partial differential equations namely the nonlinear 

time fractional Clannish Random Walker’s Parabolic (CRWP) equation, the nonlinear time fractional modified Kawahara equation, and 

the nonlinear time fractional BBM-Burger equation by utilizing an extended form of exp(-φ(ξ))-expansion method in the sense of con-

formable fractional derivative. As outcomes, some new exact solutions are obtained and signified by hyperbolic function solutions, trigo-

nometric function solutions, and rational function solutions. Some solutions have been plotted by MATLAB software to show the physi-

cal significance of our studied equations. In the point of view of our executed method and generated results, we may conclude that ex-

tended exp (-φ(ξ))-expansion method is more efficient than exp(-φ(ξ))-expansion method to extract the new exact solutions for solving 

any types of integer and fractional differential equations arising in mathematical physics. 

 
Keywords: Conformable Fractional Derivative; Extended Exp(-Φ(Ξ))-Expansion Method; Exact Solution; Time Fractional CRWP Equation; Time Frac-

tional BBM-Burger Equation; Time Fractional Modified Kawahara Equation. 

 

1. Introduction 

Nowadays, fractional partial differential equations (FPDEs) have received considerable attention owing to their various physical aspects 

in different fields, such as physics, applied mathematics, mathematical biology, engineering, fluid mechanics, plasma physics, optical 

fibers, neural physics, solid state physics, viscoelasticity, electromagnetism, electrochemistry, signal processing, chaos, the finance and 

fractal dynamics and etc. [1–3]. 

Over the past few decades, due to the advent of computational facilities, many powerful symbolic computer software such as Maple, 

Mathematica, and MATLAB have provided a platform in which researchers [5–34] can obtain new exact solution of well-known FPDEs 

that arises in applied sciences by numerous robust influential methods, such as Sub-equation method [4,5], Improved sub-equation meth-

od [6], [7], Exp-function method [8], First integral method [9], (G′/G)-expansion method [10–12], Improved (G′/G)-expansion method 

[13], [14], [27], (G′/G, 1/G)-expansion method [14], Improved (1/G′)-expansion method [14], Modified simple equation method [15], 

[16], Modified Kudryashov method [17–19], The generalized Kudryashov method [20], [21], Exponential rational function method [22], 

exp(−φ(ξ))-expansion method [23–25], Extension exp(−φ(ξ))-expansion method [26], [27], Sine-Gordon equation expansion method 

[29,30], Extended sin-Gordon equation method [31–33], and so on [34]. Exact solutions for FDEs are used in mathematical modeling of 

physical phenomena and become one of the furthermost exciting active areas of research investigation for mathematicians, physicists, 

and engineers. 

Many scholars [23–25] have employed the exp(−φ(ξ))expansion method to look for new types of traveling wave solutions of the non-

linear partial differential equations (PDEs) arising in above discussed fields. In the exp(−φ(ξ)) expansion method, u(ξ) =

∑ ai (exp(−φ(ξ)))
i

i=n
i=0  is considered as the exact solutions of the nonlinear PDEs with the aid of an auxiliary equation which is defined 

by φ′(ξ) = exp(−φ(ξ)) + μ exp(φ(ξ)) + λ, whereμ, λ ∈ ℝ. 

Recently, authors [26], [27] have executed the extended exp(−φ(ξ))- expansion method to solve numerous nonlinear PDEs and space 

and time fractional PDES and obtained some new solutions rather than the exp(−φ(ξ))- expansion method. For this purpose, they con-

sidered the solution type u(ξ) = ∑ ai (exp(−φ(ξ)))
i

i=n
i=0 + ∑ bi (exp(−φ(ξ)))

−i
i=n
i=1  through an auxiliary ordinary differential equation 

φ′(ξ) = exp(−φ(ξ)) + μ exp(φ(ξ)) + λ.  

To date, as far as authors knowledge, no scholars did not further investigate the exact solutions of the nonlinear time fractional Clannish 

Random Walker’s Parabolic (CRWP) equation, the nonlinear time fractional modified Kawahara equation and the nonlinear time frac-

tional BBM-Burger equation through the extended exp(−φ(ξ))-expansion method with conformable fractional derivative sense. 

http://creativecommons.org/licenses/by/3.0/
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This article aims to adopt the extended exp(−φ(ξ))-expansion method for constructing the exact solutions for the nonlinear time frac-

tional Clannish Random Walker’s Parabolic (CRWP) equation, the nonlinear time fractional modified Kawahara equation and the non-

linear time fractional BBM-Burger equation with the aid of conformable fractional derivative sense.  

The rest of this paper is organized as follows. In section 2, the description of the conformable fractional derivative and method are 

discussed. In section 3, As applications of this method, to construct the exact solitary wave solutions of the nonlinear conformable time 

fractional equations. In section 4, we provide some graphical illustrations among the derived solutions. Finally, we briefly conclude our 

generated solutions and executed method in section 5. 

2. Preliminaries and methods 

2.1. Definition and some features of conformable fractional derivative 

The conformable fractional derivative with a limit operator which was initially introduced by Khalil et al. [35]. The definition of the 

conformable fractional derivative with the limit operator is as follows: 

Definition 1. f: (0, ∞) → R, then, the conformable fractional derivative of f order α is defined as 

 

Dt
αf(t) = lim

ε→0

f(t+εt1−α)−f(t)

ε
, for all t > 0, 0 < α ≤ 1. 

 

Later, Abdeljawad [36] has also offered chain rule, exponential functions, Gronwalls inequality, integration by parts, Taylor power series 

expansions and Laplace transform for conformable derivative in fractional versions. The definition of conformable fractional derivative 

can easily overcome the difficulties of exiting modified Riemann-Liouville derivative definition [37]. The conformable fractional deriva-

tive satisfies some workable features which are mentioned in the following theorems [18,19,31,35,36]: 

Theorem 1. Let α ∈ (0,1], and f = f(t), g = g(t) be α-conformable differentiable at a point t > 0, then: 

 

i)  Dt
α(af + bg) = aDt

αf + bDt
αg, for all a, b ∈ R. 

 

ii)  Dt
α(tμ) = μtμ−α, for all μ ∈ R. 

 

iii)  Dt
α(fg) = gDt

α(f) + fDt
α(g). 

 

iv)  Dt
α (

f

g
) =

gDt
α(f)−fDt

α(g)

g2 . 

Furthermore, if f is differentiable, thenDt
α(f(t)) = t1−α df

dt
. 

 

Theorem 2: Let 𝑓: (0, ∝) → 𝑅 be a function such that 𝑓 is differentiable and 𝛼-conformable differentiable. Also, let 𝑔 be a differentiable 

function defined in the range of 𝑓. Then 

 

Dt
α(fog)(t) = t1−αg(t)α−1g′(t)Dt

α(f(t))t=g(t). 

 

where prime denotes the classical derivatives with respect to t. 

2.2. Outline of the extended 𝐞𝐱𝐩(−𝛗(𝛏))- expansion technique 

Let us consider general nonlinear FPDEs in the form 

 

P(u, Dt
αu, ux1

, … . . uxm
, Dt

2αu, ux1x2
, … … … ) = 0, 0 < α ≤ 1.                                                                                                                       (1) 

 

Where u = u(t, x1, … . xm), is an unknown function, Dt
αu and Dt

2αu are the modified Riemann-Liouville derivatives of u with respect to t. 

P is a polynomial in u = u(t, x1, … . xm) and its various partial derivatives, in which the nonlinear terms and highest order derivatives are 

involved.  

The main steps of this method are detailed in the article (see details Kumar and Kaplan [26]). 

Step 1: Combine the real variables x1 , x2, … … , xm and t by a compound variable ξ 

 

u = u(t, x1, … . xm) = u(ξ), ξ = k1x1 + ⋯ + kmxm ±
νtα

α
 ,                                                                                                                           (2) 

 

where, k1, k2, k3, … … , km and v are arbitrary constants. By applying the traveling wave transformation of Eq. (2) into Eq. (1), we have 

an ordinary differential equation (ODE) for u =  u(ξ) 

 

Q(u, u′, u′′, u′′′ , … … … . ) = 0.                                                                                                                                                                        (3) 

 

where Q is a polynomial of u and, its derivatives and the superscripts indicate the ordinary derivatives with respect to ξ. If possible, we 

should integrate Eq. (3) term by term one or more times. 

 

Step 2: Assume the traveling wave solution of Eq. (3) can be manifested as follows: 

 

u(ξ) = ∑ ai (exp(−φ(ξ)))
i

n
i=0 + ∑ bi (exp(−φ(ξ)))

−i
n
i=1 ,                                                                                                                         (4) 
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where the coefficients ai(0 ≤ i ≤ n. n ∈ N) and bi(1 ≤ i ≤ n. n ∈ N) are constants to be determined and either an or bn may be zero but 

both an and bn cannot be zero simultaneously. The positive integer n can be determined by considering the homogeneous balance be-

tween the highest order derivatives and nonlinear terms appearing in Eq. (3). Moreover, we define the degree of u(ξ) as D(u(ξ)) = n, 

which gives rise to a degree of another expression as follows: 

 

D (
dqu

dξq
) = n + q, D (up (

dqu

dξq
)

s

) = np + s(n + q) . 

 

Where φ = φ(ξ) satisfies the following ordinary differential equation: 

 

φ′(ξ) = exp(−φ(ξ)) + μ exp(φ(ξ)) + λ,                                                                                                                                                     (5) 

 

Step 3: By determining the value of parameter n, we substitute this value into Eq. (4) along with Eq. (5). Then we put the value of u(ξ) 

and its derivatives into Eq.(3) and collecting all the terms of the same power exp(−φ(ξ))
i
, i = 0, ±1, ±2 … ± n and equating them to 

zero, we obtain a system of algebraic equations, which can be solved by Maple to get the values of ai’s, bi’s,k1, k2, k3,…, kn, v and 

constant of integration.  

As we know, Eq. (5) has the following general solutions [26]: 

 

Type-I (Hyperbolic function solutions): When 𝜇 ≠ 0, ∆= 𝜆2 − 4𝜇 > 0 

 

φ(ξ) = ln (
−√λ2−4μ tanh{√λ2−4μ (ξ+E)}−λ

2μ
),  

 

φ(ξ) = ln (
−√λ2−4μ coth{√λ2−4μ (ξ+E)}−λ

2μ
),  

 

Type-II (Trigonometric function solutions): When 𝜇 ≠ 0, ∆= 𝜆2 − 4𝜇 < 0 

 

φ(ξ) = ln (
√4μ−λ2 tan{√4μ−λ2 (ξ+E)}−λ

2μ
),  

 

φ(𝜉) = 𝑙𝑛 (
√4𝜇−𝜆2 𝑐𝑜𝑡{√4𝜇−𝜆2 (𝜉+𝐸)}−𝜆

2𝜇
),  

 

Type-III (Exponential function solutions): When 𝜇 = 0, 𝜆 ≠ 0, 𝜆2 − 4𝜇 > 0  

 

𝜑(𝜉) = −𝑙𝑛 (
𝜆

𝑒𝑥𝑝(𝜆(𝜉+𝐸))−1
),  

 

Type-IV (Rational function solutions): When 𝜇 ≠ 0, 𝜆 ≠ 0, 𝜆2 − 4𝜇 = 0 

 

𝜑(𝜉) = 𝑙𝑛 (−
2(𝜆(𝜉+𝐸)+2)

𝜆2(𝜉+𝐸)
),  

 

Type-V: (Other solutions): When 𝜇 = 0, 𝜆 = 0, 𝜆2 − 4𝜇 = 0  

 

𝜑(𝜉) = 𝑙𝑛(𝜉 + 𝐸),  

 

where 𝐸 is the integrating constant. 

Step 4: Substituting the values of 𝑎𝑖’s, 𝑏𝑖’s, 𝑘1, 𝑘2, 𝑘3,…, 𝑘𝑛, 𝑣 and constant value along with the general solutions of Eq. (5) into Eq. 

(4). Then we find the complete solution of the general nonlinear FPDEs of Eq. (1). 

3. Applications of the suggested technique 

In this section, we will adopt the technique described in Section 2 to seek the exact solutions for the nonlinear time fractional Clannish 

Random Walker’s Parabolic (CRWP) equation, the nonlinear time fractional modified Kawahara equation and the nonlinear time frac-

tional BBM-Burger equation. 

3.1. Time fractional clannish random walker’s parabolic (CRWP) equation 

In this sub-section, we consider the time fractional Clannish Random Walker’s Parabolic (CRWP) equation [38]. 

 

𝐷𝑡
𝛼𝑢 − 𝑢𝑥 + 2𝑢𝑢𝑥 + 𝑢𝑥𝑥 = 0, 𝑡 > 0, 𝑥 ∈ ℝ .                                                                                                                                                (6) 

where, 𝛼 is a parameter describing the order of the fractional time derivative and 0 < 𝛼 ≤ 1. 

 

In the past, there are a few articles about this equation. In 2013, Hasan Bulut and Bülent Kılıç [38] applied the Kudryashov method of Eq. 

(6) and generated the hyperbolic function solutions. Recently, Odabasi and Misirli [39] employed the modified trial equation method and 

secured several types of new solutions such as periodic function solutions, rational function solutions, and single kink solutions. Very 
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recently, Ozkan Gunar and his teammates [40] utilized two reliable and efficient methods namely (𝐺’/𝐺) -expansion method and 

(𝐺’/𝐺, 1/𝐺) -expansion method. As outcomes, some new soliton solutions are derived which have been involved as hyperbolic function 

solutions, trigonometric function solutions, and rational function solutions. 

 

Based on the conformable complex fractional transformation like as section 2, we perform the following transformation: 

𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑘𝑥 −
𝜈𝑡𝛼

𝛼
 .                                                                                                                                                                        (7) 

where 𝑘 and 𝜈 are nonzero constants. 

 

Then Eq. (7) can be reduced to the following ODE is in the form 

 

−(𝑘 + 𝜈)𝑢′ + 2𝑘𝑢𝑢′ + 𝑘2𝑢′′ = 0.                                                                                                                                                                (8) 

 

Integrating once w.r.t. 𝜉 and we obtain an ODE from Eq. (8) 

 

−(𝑘 + 𝜈)𝑢 + 𝑘𝑢2 + 𝑘2𝑢′ + 𝐶 = 0.                                                                                                                                                               (9) 

 

where primes denote differentiation with respect to 𝜉 and 𝐶 is the integration constant. By balancing the highest order derivative term 𝑢′ 

with the nonlinear term 𝑢2 in (9), gives 𝑛 = 1. Therefore, the extended 𝑒𝑥𝑝(−𝜑(𝜉)) -expansion method allows us to use the solution in 

the following form: 

 

𝑢(𝜉) = 𝑎0 + 𝑎1𝑒𝑥𝑝(−𝜑(𝜉)) + 𝑏1𝑒𝑥𝑝(−𝜑(𝜉))
−1

.                                                                                                                                     (10) 

 

where either 𝑎1 or 𝑏1 may be zero but both 𝑎1 and 𝑏1cannot be zero simultaneously and 𝜑(𝜉) satisfies the Eq. (5). 

By substituting Eq. (10) into Eq. (9), we obtain a polynomial in 𝑒𝑥𝑝(−𝜑(𝜉)). Setting the coefficients of the powers of 𝑒𝑥𝑝(−𝜑(𝜉)) to 

zero, we obtain the following system of algebraic equations: 

 

𝑒−2𝜑(𝜉) ∶  −𝑘2𝑎1 + 𝑘𝑎1
2 = 0,                                                                                                                                                                     (11a) 

 

𝑒−𝜑(𝜉) ∶  −𝑘2𝜆𝑎1 + 2𝑘𝑎0𝑎1 − 𝑘𝑎1 − 𝜈𝑎1 = 0,                                                                                                                                         (11b) 

 

𝑒0 ∶ −𝑘2𝜇𝑎1 + 𝑘2𝑏1 + 𝑘𝑎0
2 + 2𝑘𝑎1𝑏1 − 𝑘𝑎0 − 𝜈𝑎0 + 𝐶 = 0,                                                                                                                 (11c) 

 

𝑒𝜑(𝜉) ∶  𝑘2𝜆𝑏1 + 2𝑘𝑎0𝑏1 − 𝑘𝑏1 − 𝜈𝑏1 = 0,                                                                                                                                              (11d) 

 

𝑒2𝜑(𝜉) ∶  𝑘2𝜇𝑏1 + 𝑘𝑏1
2 = 0.                                                                                                                                                                        (11e) 

 

Solving the above system of Eq. (11a – 11e) for 𝑎0, 𝑎1, 𝑏1, 𝑣 and 𝐶, we obtain the following set of values with the aid of symbolic com-

puter software Maple. 

 

Set-1: 𝐶 = 𝑘3𝜇 − 𝑘2𝜆𝑎0 + 𝑘𝑎0
2, 𝑣 = −𝑘2𝜆 + 2𝑘𝑎0 − 𝑘, 𝑎0 = 𝑎0, 𝑎1 = 𝑘 and 𝑏1 = 0. 

 

Set-2: 𝐶 = 𝑘3𝜇 + 𝑘2𝜆𝑎0 + 𝑘𝑎0
2, 𝑣 = 𝑘2𝜆 + 2𝑘𝑎0 − 𝑘, 𝑎0 = 𝑎0, 𝑎1 = 0 and 𝑏1 = −𝑘𝜇. 

 

The above sets are discussed for different types of solution. 

 

Type-I (Hyperbolic function solutions): When 𝜇 ≠ 0, 𝜆2 − 4𝜇 > 0 

 

Substituting the values of set-1 and set-2 into Eq. (10) along with the hyperbolic function solutions of Eq. (5), we get the following fami-

lies of hyperbolic function solutions. 

 

𝑢1(𝑥, 𝑡) = 𝑎0 −
2𝑘𝜇

√𝜆2−4𝜇 𝑡𝑎𝑛ℎ(
1

2
√𝜆2−4𝜇(𝑘𝑥−

(−𝑘2𝜆−2𝑘𝑎0−𝑘)𝑡𝛼

𝛼
+𝐸))+𝜆

 ,                                                                                                                   (12) 

 

𝑢2(𝑥, 𝑡) = 𝑎0 −
2𝑘𝜇

√𝜆2−4𝜇 𝑐𝑜𝑡ℎ(
1

2
√𝜆2−4𝜇(𝑘𝑥−

(−𝑘2𝜆−2𝑘𝑎0−𝑘)𝑡𝛼

𝛼
+𝐸))+𝜆

 ,                                                                                                                   (13) 

 

𝑢3(𝑥, 𝑡) =  𝑎0 +
1

2
𝑘 (√𝜆2 − 4𝜇 𝑡𝑎𝑛ℎ (

1

2
√𝜆2 − 4𝜇 (𝑘𝑥 −

(−𝑘2𝜆−2𝑘𝑎0−𝑘)𝑡𝛼

𝛼
+ 𝐸)) + 𝜆),                                                                         (14) 

 

𝑢4(𝑥, 𝑡) =  𝑎0 +
1

2
𝑘 (√𝜆2 − 4𝜇 𝑐𝑜𝑡ℎ (

1

2
√𝜆2 − 4𝜇 (𝑘𝑥 −

(−𝑘2𝜆−2𝑘𝑎0−𝑘)𝑡𝛼

𝛼
+ 𝐸)) + 𝜆),                                                                          (15) 

 

Type-II (Trigonometric function solutions): When 𝜇 ≠ 0, 𝜆2 − 4𝜇 < 0 

 

Substituting the values of set-1 and set-2 into Eq. (10) along with the trigonometric function solutions of Eq. (5), we obtain the following 

families of trigonometric function solutions. 
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𝑢5(𝑥, 𝑡) = 𝑎0 +

2𝑘𝜇

√4𝜇−𝜆2 𝑡𝑎𝑛(
1

2
√4𝜇−𝜆2(𝑘𝑥−

(−𝑘2𝜆−2𝑘𝑎0−𝑘)𝑡𝛼

𝛼
+𝐸))−𝜆

,                                                                                                                     (16) 

 

𝑢6(𝑥, 𝑡) = 𝑎0 +
2𝑘𝜇

√4𝜇−𝜆2 𝑐𝑜𝑡(
1

2
√4𝜇−𝜆2(𝑘𝑥−

(−𝑘2𝜆−2𝑘𝑎0−𝑘)𝑡𝛼

𝛼
+𝐸))−𝜆

,                                                                                                                      (17) 

 

𝑢7(𝑥, 𝑡) =  𝑎0 −
1

2
𝑘 (√4𝜇 − 𝜆2 𝑡𝑎𝑛 (

1

2
√4𝜇 − 𝜆2 (𝑘𝑥 −

(−𝑘2𝜆−2𝑘𝑎0−𝑘)𝑡𝛼

𝛼
+ 𝐸)) − 𝜆),                                                                            (18) 

 

𝑢8(𝑥, 𝑡) =  𝑎0 −
1

2
𝑘 (√4𝜇 − 𝜆2 𝑐𝑜𝑡 (

1

2
√4𝜇 − 𝜆2 (𝑘𝑥 −

(−𝑘2𝜆−2𝑘𝑎0−𝑘)𝑡𝛼

𝛼
+ 𝐸)) − 𝜆),                                                                            (19) 

 

Type-III (Rational function solutions): When 𝜇 ≠ 0, 𝜆 ≠ 0 𝜆2 − 4𝜇 = 0 

 

Substituting the values of set-1 and set-2 into Eq. (10) along with the rational function solutions of Eq. (5), we find the following families 

of rational function solutions. 

 

𝑢9(𝑥, 𝑡) = 𝑎0 +
1

2
(

𝑘𝜆2(𝑘𝑥−
(−𝑘2𝜆−2𝑘𝑎0−𝑘)𝑡𝛼

𝛼
+𝐸)

𝜆(𝑘𝑥−
(−𝑘2𝜆−2𝑘𝑎0−𝑘)𝑡𝛼

𝛼
+𝐸)+2

),                                                                                                                                             (20) 

 

𝑢10(𝑥, 𝑡) = 𝑎0 +
2𝑘𝜇(𝜆(𝑘𝑥−

(−𝑘2𝜆−2𝑘𝑎0−𝑘)𝑡𝛼

𝛼
+𝐸)+2)

𝜆2(𝑘𝑥−
(−𝑘2𝜆−2𝑘𝑎0−𝑘)𝑡𝛼

𝛼
+𝐸)+2

 ,                                                                                                                                         (21) 

 

Type-IV (Exponential function solutions): When 𝜇 = 0, 𝜆 ≠ 0 𝜆2 − 4𝜇 > 0 

 

Substituting the values of set-1 and set-2 into Eq. (10) along with the exponential function solutions of Eq. (5), we produce the following 

families of exponential function solutions. 

 

𝑢11(𝑥, 𝑡) = 𝑎0 +
𝑘𝜆

𝑒
𝜆(𝑘𝑥−

(−𝑘2𝜆−2𝑘𝑎0−𝑘)𝑡𝛼

𝛼 +𝐸)
−1

,                                                                                                                                                   (22) 

 

𝑢12(𝑥, 𝑡) = 𝑎0 −
𝑘𝜇

𝜆
(𝑒

𝜆(𝑘𝑥−
(−𝑘2𝜆−2𝑘𝑎0−𝑘)𝑡𝛼

𝛼
+𝐸)

− 1) ,                                                                                                                                   (23) 

 

By comparing our generated solutions with the authors [38], [39] results, we can see that our solutions are new in the sense of conforma-

ble fractional derivative. 

3.2. Time fractional modified kawahara equation  

In this sub-section, we consider the nonlinear time fractional modified Kawahara equation [41]. 

 

𝐷𝑡
𝛼𝑢 + 𝑢2𝑢𝑥 + 𝜀𝑢𝑥𝑥 + 𝛿𝑢𝑥𝑥𝑥 = 0, 𝑡 > 0, 𝑥 ∈ ℝ .                                                                                                                                       (24) 

 

Where 𝛼 is a parameter describing the order of the fractional time derivative and 0 < 𝛼 ≤ 1.The nonlinear time fractional modified Ka-

wahara equation was studied by different researchers, and it has been solved using various analytical and numerical approaches. For in-

stance, Atangana et al. [40] studied the numerical solutions of time fractional modified nonlinear Kawahara equation using the homotopy 

decomposition and the Sumudu transform methods. Guner and Hasan [41] solved the time fractional modified nonlinear Kawahara equa-

tion using another analytical method namely fractional exp-function method and secured some exact soliton solutions.  

For our purpose, we introduce the same transformations as Eq. (7). Moreover, the same procedure we have the ODE from Eq. (24), 

 

−𝑣𝑢′ + 𝑘𝑢2𝑢′ + 𝜀𝑘2𝑢′′ + 𝛿𝑘3𝑢′′′ = 0,                                                                                                                                                     (25) 

 

By once integration with respect to, we obtain 

 

−𝑣𝑢 +
𝑘

3
𝑢3 + 𝜀𝑘2𝑢′ + 𝛿𝑘3𝑢′′ + 𝐶 = 0.                                                                                                                                                    (26) 

 

where primes denote differentiation with respect to 𝜉 and 𝐶 is the integration constant. By balancing the highest order derivative term 𝑢′′ 

with the nonlinear term 𝑢3 in (26), gives 𝑛 = 1. Therefore, extended 𝑒𝑥𝑝(−𝜑(𝜉))-expansion method allows us to use the solution in the 

following form: 

 

𝑢(𝜉) = 𝑎0 + 𝑎1𝑒𝑥𝑝(−𝜑(𝜉)) + 𝑏1𝑒𝑥𝑝(−𝜑(𝜉))
−1

,                                                                                                                                     (27) 

 

where either 𝑎1 or 𝑏1 may be zero but both 𝑎1 and 𝑏1 cannot be zero simultaneously and 𝜑(𝜉) satisfies the Eq. (5). 

 

By substituting Eq. (27) into Eq. (26), we obtain a polynomial in 𝑒𝑥𝑝(−𝜑(𝜉)). Setting the coefficients of the powers of 𝑒𝑥𝑝(−𝜑(𝜉)) to 

zero, we obtain the following system of algebraic equations: 
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𝑒−3𝜑(𝜉) ∶  2𝛿𝑘3𝑎1 +

1

3
𝑘𝑎1

2 = 0,                                                                                                                                                                 (28a) 

𝑒−2𝜑(𝜉) ∶  3𝛿𝑘3𝜆𝑎1 − 𝑘2𝜀𝑎1 + 𝑘𝑎0𝑎1
2 = 0,                                                                                                                                              (28b) 

 

𝑒−𝜑(𝜉) ∶  𝑘3𝛿𝜆2𝑎1 + 2𝑘3𝜇𝛿𝑎1 − 𝑘2𝜀𝜆𝑎1 + 𝑘𝑎0
2𝑎1 + 𝑘𝑎1

2𝑏1 − 𝑣𝑎1 = 0,                                                                                                 (28c) 

 

𝑒0 ∶  𝑘3𝛿𝜆𝑏1 − 𝑘2𝜇𝜀𝑎1 + 𝛿𝑘3𝜇𝜆𝑎1 +
1

3
𝑘𝑎0

3 + 𝑘2𝜀𝑏1 + 2𝑘𝑎0𝑎1𝑏1 − 𝑣𝑎0 + 𝐶 = 0,                                                                               (28d) 

 

𝑒𝜑(𝜉) ∶  𝑘3𝛿𝜆2𝑏1 + 2𝑘3𝜇𝛿𝑏1 + 𝑘2𝜀𝜆𝑏1 + 𝑘𝑎0
2𝑏1 + 𝑘𝑎1𝑏1

2 − 𝑣𝑏1 = 0,                                                                                                    (28e) 

 

𝑒2𝜑(𝜉) ∶ 3𝑘3𝜇𝛿𝜆𝑏1 + 𝑘2𝜇𝜀𝑏1 + 𝑘𝑎0𝑏1
2 = 0,                                                                                                                                              (28f) 

 

𝑒3𝜑(𝜉) ∶ 2𝛿𝑘3𝜇2𝑏1 +
1

3
𝑘𝑏1

3 = 0.                                                                                                                                                                (28g) 

 

Solving the above system of Eq. (28a – 28g) for 𝑎0, 𝑎1, 𝑏1, 𝑣, and 𝐶, we obtain the following set of values with the aid of symbolic com-

puter software Maple, Mathematica or MATLAB. 

 

Set-1: 𝐶 = ±
1

54
(

𝜀𝑘√−6𝛿(−9𝑘2𝛿2𝜆2+36𝑘2𝜇𝛿2+𝜀2)

𝛿2
) , 𝑎0 = ±

3𝑘𝛿𝜆−𝜀

√−6𝛿
, 𝑎1 = ±√−6𝛿𝑘, 𝑏1 = 0, and 𝜈 =

𝑘

6
(

−3𝑘2𝛿2𝜆2+12𝑘2𝜇𝛿2−𝜀2

𝛿
) 

 

Set-2:𝐶 = ∓
1

54
(

𝜀𝑘√−6𝛿(−9𝑘2𝛿2𝜆2+36𝑘2𝜇𝛿2+𝜀2)

𝛿2
) , 𝑎0 = ∓

3𝑘𝛿𝜆−𝜀

√−6𝛿
, 𝑎1 = 0, 𝑏1 = ∓√−6𝛿𝜇𝑘, and 𝜈 =

𝑘

6
(

−3𝑘2𝛿2𝜆2+12𝑘2𝜇𝛿2−𝜀2

𝛿
) 

 

The above sets are discussed for different types of solutions. 

 

Substituting the values of set-1 and set-2 into Eq. (27) along with the hyperbolic function solutions of Eq. (5), we obtain the following 

families of hyperbolic function solutions. 

 

𝑢1,2(𝑥, 𝑡) = ± (
3𝑘𝛿𝜆−𝜀

√−6𝛿
+

2𝑘𝜇√−6𝛿

√𝜆2−4𝜇 𝑡𝑎𝑛ℎ(
1

2
√𝜆2−4𝜇(𝜉+𝐸))+𝜆

 ),                                                                                                                           (29) 

 

𝑢3,4(𝑥, 𝑡) = ± (
3𝑘𝛿𝜆−𝜀

√−6𝛿
+

2𝑘𝜇√−6𝛿

√𝜆2−4𝜇 𝑐𝑜𝑡ℎ(
1

2
√𝜆2−4𝜇(𝜉+𝐸))+𝜆

 ),                                                                                                                            (30) 

 

𝑢5,6(𝑥, 𝑡) = ± (
3𝑘𝛿𝜆+𝜀

√−6𝛿
+

1

2
𝑘√−6𝛿 (√𝜆2 − 4𝜇 𝑡𝑎𝑛ℎ (

1

2
√𝜆2 − 4𝜇(𝜉 + 𝐸)) + 𝜆)),                                                                                  (31) 

 

𝑢7,8(𝑥, 𝑡) = ± (
3𝑘𝛿𝜆+𝜀

√−6𝛿
+

1

2
𝑘√−6𝛿 (√𝜆2 − 4𝜇 𝑐𝑜𝑡ℎ (

1

2
√𝜆2 − 4𝜇(𝜉 + 𝐸)) + 𝜆)),                                                                                   (32) 

 

For Eq. (29)-Eq. (32), 𝜉 = 𝑘𝑥 −
𝑘

6
(

−3𝑘2𝛿2𝜆2+12𝑘2𝜇𝛿2−𝜀2

𝛿
)

𝑡𝛼

𝛼
. 

 

Substituting the values of set-1 and set-2 into Eq. (27) along with the trigonometric function solutions of Eq. (5), we extract the following 

families of trigonometric function solutions. 

 

𝑢9,10(𝑥, 𝑡) = ± (
3𝑘𝛿𝜆−𝜀

√−6𝛿
+

2𝑘𝜇√−6𝛿

√4𝜇−𝜆2 𝑡𝑎𝑛(
1

2
√4𝜇−𝜆2(𝜉+𝐸))−𝜆

 ),                                                                                                                           (33) 

 

𝑢11,12(𝑥, 𝑡) = ± (
3𝑘𝛿𝜆−𝜀

√−6𝛿
+

2𝑘𝜇√−6𝛿

√4𝜇−𝜆2 𝑐𝑜𝑡(
1

2
√4𝜇−𝜆2(𝜉+𝐸))−𝜆

 ),                                                                                                                          (34) 

 

𝑢13,14(𝑥, 𝑡) = ± (
3𝑘𝛿𝜆−𝜀

√−6𝛿
−

1

2
𝑘√−6𝛿√4𝜇 − 𝜆2 𝑡𝑎𝑛 (

1

2
√4𝜇 − 𝜆2(𝜉 + 𝐸)) − 𝜆 ),                                                                                      (35) 

 

𝑢15,16(𝑥, 𝑡) = ± (
3𝑘𝛿𝜆−𝜀

√−6𝛿
−

1

2
𝑘√−6𝛿√4𝜇 − 𝜆2 𝑐𝑜𝑡 (

1

2
√4𝜇 − 𝜆2(𝜉 + 𝐸)) − 𝜆 ),                                                                                      (36) 

 

For Eq. (33) to Eq. (36), 𝜉 = 𝑘𝑥 −
𝑘

6
(

−3𝑘2𝛿2𝜆2+12𝑘2𝜇𝛿2−𝜀2

𝛿
)

𝑡𝛼

𝛼
. 

 

Substituting the values of set-1 and set-2 into Eq. (27) along with the rational function solutions of Eq. (5), we explore the following 

families of rational function solutions. 

𝑢17,18(𝑥, 𝑡) = ± (
3𝑘𝛿𝜆−𝜀

√−6𝛿
+

1

2

√−6𝛿𝑘𝜆2(𝜉+𝐸)

𝜆(𝜉+𝐸)+2
),                                                                                                                                                (37) 

 

𝑢19,20(𝑥, 𝑡) = ± (
3𝑘𝛿𝜆+𝜀

√−6𝛿
+

2√−6𝛿𝜇𝑘(𝜆(𝜉+𝐸)+2)

𝜆2(𝜉+𝐸)
),                                                                                                                                          (38) 
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where 𝜉 = 𝑘𝑥 −
𝑘

6
(

−3𝑘2𝛿2𝜆2+12𝑘2𝜇𝛿2−𝜀2

𝛿
)

𝑡𝛼

𝛼
. 

 

Substituting the values of set-1 and set-2 into Eq. (27) along with the exponential function solutions of Eq. (5), we find the following 

families of exponential function solutions. 

 

𝑢21,22(𝑥, 𝑡) = ± (
3𝑘𝛿𝜆−𝜀

√−6𝛿
+

√−6𝛿𝑘𝜆

𝑒𝜆(𝜉+𝐸)−1
),                                                                                                                                                          (39) 

 

𝑢23,24(𝑥, 𝑡) = ± (
3𝑘𝛿𝜆+𝜀

√−6𝛿
),                                                                                                                                                                            (40) 

 

where  𝜉 = 𝑘𝑥 −
𝑘

6
(

−3𝑘2𝛿2𝜆2−𝜀2

𝛿
)

𝑡𝛼

𝛼
. 

 

Substituting the values of set-1 and set-2 into Eq. (27) along with the other solutions of Eq. (5), we get the following solutions. 

 

𝑢25,26(𝑥, 𝑡) = ± (
√−6𝛿𝑘

(𝜉+𝐸)
),                                                                                                                                                                             (41) 

 

𝑢27,28(𝑥, 𝑡) = ± (
𝜀

√−6𝛿
),                                                                                                                                                                               (42) 

 

where 𝜉 = 𝑘𝑥 +
𝑘

6
(

𝜀2

𝛿
)

𝑡𝛼

𝛼
. 

 

Comparing our results with Atangana et al. [40], Guner and Hasan [41] results, it can be seen that the produced results are new and dif-

ferent in the sense of conformable fractional derivative. 

3.3. Time fractional BBM-Burger equation 

In this sub-section, we consider the time the nonlinear time fractional BBM-Burger equation [46]. 

 

𝐷𝑡
𝛼𝑢 − 𝑢𝑥𝑥𝑡 + 𝑢𝑥 + (

1

2
𝑢2)

𝑥
= 0, 𝑡 > 0, 𝑥 ∈ ℝ .                                                                                                                                        (43) 

where 𝛼 is a parameter describing the order of the fractional time derivative and 0 < 𝛼 ≤ 1. 

 

S. Kumar and D. Kumar [43] applied new fractional homotopy analysis transform method to time fractional BBM-Burger equation and 

received the series solution of the Eq. (43). Song and Zhang [44] and Fakhari et al. [45] derived a different type of solutions of the frac-

tional BBM-Burger equation by using homotopy analysis method. Shakeel et al. [46] executed an analytical method which is called frac-

tional novel (𝐺’/𝐺)-expansion method and attained some new explicit exact solutions. 

For our purpose, we introduce the same transformations as Eq. (7). Moreover, the same procedure we have the ODE from Eq. (43), 

 

(𝑘 − 𝑣)𝑢′ + 𝑘2𝑣𝑢′′′ + 𝑘 (
𝑢2

2
)

′

= 0.                                                                                                                                                           (44) 

 

By once integration with respect to, we obtain 

 

(𝑘 − 𝑣)𝑢 +
1

2
𝑘𝑢2 + 𝑘2𝑣𝑢′′ + 𝐶 = 0.                                                                                                                                                         (45) 

where primes denote differentiation with respect to 𝜉 and 𝐶 is the integration constant. By balancing the highest order derivative term 𝑢′′ 

with the nonlinear term 𝑢2 in Eq. (45), gives 𝑛 = 2. Therefore, extended 𝑒𝑥𝑝(−𝜑(𝜉))-expansion method allows us to use the solution in 

the following form: 

 

𝑢(𝜉) = 𝑎0 + 𝑎1𝑒𝑥𝑝(−𝜑(𝜉)) + 𝑎2𝑒𝑥𝑝(−𝜑(𝜉))
2

+ 𝑏1𝑒𝑥𝑝(−𝜑(𝜉))
−1

+ 𝑏2𝑒𝑥𝑝(−𝜑(𝜉))
−2

,                                                                   (46) 

 

where either 𝑎2 or 𝑏2 may be zero but both 𝑎2 and 𝑏2 cannot be zero simultaneously and 𝜑(𝜉) satisfies the Eq. (5). 

Now by substituting Eq. (46) into Eq. (45), we obtain a polynomial in 𝑒𝑥𝑝(−𝜑(𝜉)) . Setting the coefficients of the powers of 

𝑒𝑥𝑝(−𝜑(𝜉)) to zero and we obtained a system of algebraic equation. Solving this system of algebraic equations using Maple for the set 

of values of 𝑎0, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝜈, 𝑘, and 𝐶. 

 

Set-1: 𝐶 = −
1

2

𝑘4𝑣2𝜆4−8𝑘4𝜇𝑣2𝜆2+16𝑘4𝜇2𝑣2−𝑘2+2𝑘𝑣−𝑣2

𝑘
, 𝑎0 = −

((𝜆2+8𝜇)𝑘2−1)𝑣+𝑘

𝑘
, 𝑎1 = −12𝑣𝑘𝜆, 𝑎2 = 12𝑘𝑣, 𝑏1 = 0, and 𝑏2 = 0. 

 

Set-2: 𝐶 = −
1

2

𝑘4𝑣2𝜆4−8𝑘4𝜇𝑣2𝜆2+16𝑘4𝜇2𝑣2−𝑘2+2𝑘𝑣−𝑣2

𝑘
, 𝑎0 = −

((𝜆2+8𝜇)𝑘2−1)𝑣+𝑘

𝑘
, 𝑎1 = 0,  𝑎2 = 0, 𝑏1 = −12𝑣𝑘𝜇𝜆, and 𝑏2 = −12𝑣𝑘𝜇2. 

 

The above sets are discussed for different types of solution. 

 

Substituting the values of set-1 and set-2 into Eq. (46) along with the hyperbolic function solutions of Eq. (5), we get the following fami-

lies of hyperbolic function solutions. 

 

𝑢1(𝑥, 𝑡) = −
((𝜆2+8𝜇)𝑘2−1)𝜈+𝑘

𝑘
+

24𝜈𝑘𝜆𝜇

√𝜆2−4𝜇 𝑡𝑎𝑛ℎ(
1

2
√𝜆2−4𝜇(𝜉+𝐸))+𝜆

−
48𝜈𝑘𝜇2

(√𝜆2−4𝜇 𝑡𝑎𝑛ℎ(
1

2
√𝜆2−4𝜇(𝜉+𝐸))+𝜆)

2 ,                                                            (47) 



88 International Journal of Physical Research 

 

𝑢2(𝑥, 𝑡) = −
((𝜆2+8𝜇)𝑘2−1)𝜈+𝑘

𝑘
+

24𝜈𝑘𝜆𝜇

√𝜆2−4𝜇 𝑐𝑜𝑡ℎ(
1

2
√𝜆2−4𝜇(𝜉+𝐸)) +𝜆

−
48𝜈𝑘𝜇2

(√𝜆2−4𝜇 𝑐𝑜𝑡ℎ(
1

2
√𝜆2−4𝜇(𝜉+𝐸)) +𝜆)

2,                                                             (48) 

 

𝑢3(𝑥, 𝑡) = −
((𝜆2+8𝜇)𝑘2−1)𝜈+𝑘

𝑘
+ 6𝜈𝑘𝜆 (√𝜆2 − 4𝜇 𝑡𝑎𝑛ℎ (

1

2
√𝜆2 − 4𝜇(𝜉 + 𝐸)) + 𝜆) − 3𝜈𝑘 (√𝜆2 − 4𝜇 𝑡𝑎𝑛ℎ (

1

2
√𝜆2 − 4𝜇(𝜉 + 𝐸)) + 𝜆)

2

,                   (49) 

 

𝑢4(𝑥, 𝑡) = −
((𝜆2+8𝜇)𝑘2−1)𝜈+𝑘

𝑘
+ 6𝜈𝑘𝜆 (√𝜆2 − 4𝜇 𝑐𝑜𝑡ℎ (

1

2
√𝜆2 − 4𝜇(𝜉 + 𝐸)) + 𝜆) − 3𝜈𝑘 (√𝜆2 − 4𝜇 𝑐𝑜𝑡ℎ (

1

2
√𝜆2 − 4𝜇(𝜉 + 𝐸)) + 𝜆)

2

,                    (50) 

 

Substituting the values of set-1 and set-2 into Eq. (46) along with the trigonometric function solutions of Eq. (5), we find the following 

families of trigonometric function solutions. 

 

𝑢5(𝑥, 𝑡) = −
((𝜆2+8𝜇)𝑘2−1)𝜈+𝑘

𝑘
−

24𝜈𝑘𝜆𝜇

√4𝜇−𝜆2 𝑡𝑎𝑛(
1

2
√4𝜇−𝜆2(𝜉+𝐸))−𝜆

−
48𝜈𝑘𝜇2

(√4𝜇−𝜆2 𝑡𝑎𝑛(
1

2
√4𝜇−𝜆2(𝜉+𝐸))−𝜆)

2 ,                                                               (51) 

 

𝑢6(𝑥, 𝑡) = −
((𝜆2+8𝜇)𝑘2−1)𝜈+𝑘

𝑘
−

24𝜈𝑘𝜆𝜇

√4𝜇−𝜆2 𝑐𝑜𝑡(
1

2
√4𝜇−𝜆2(𝜉+𝐸))−𝜆

−
48𝜈𝑘𝜇2

(√4𝜇−𝜆2 𝑐𝑜𝑡(
1

2
√4𝜇−𝜆2(𝜉+𝐸))−𝜆)

2,                                                                (52) 

 

𝑢7(𝑥, 𝑡) = −
((𝜆2+8𝜇)𝑘2−1)𝜈+𝑘

𝑘
− 6𝜈𝑘𝜆 (√4𝜇 − 𝜆2 𝑡𝑎𝑛 (

1

2
√4𝜇 − 𝜆2(𝜉 + 𝐸)) − 𝜆) − 3𝜈𝑘 (√4𝜇 − 𝜆2 𝑡𝑎𝑛 (

1

2
√4𝜇 − 𝜆2(𝜉 + 𝐸)) − 𝜆)

2

,                       (53) 

 

𝑢8(𝑥, 𝑡) = −
((𝜆2+8𝜇)𝑘2−1)𝜈+𝑘

𝑘
− 6𝜈𝑘𝜆 (√4𝜇 − 𝜆2 𝑐𝑜𝑡 (

1

2
√4𝜇 − 𝜆2(𝜉 + 𝐸)) − 𝜆) − 3𝜈𝑘 (√4𝜇 − 𝜆2 𝑐𝑜𝑡 (

1

2
√4𝜇 − 𝜆2(𝜉 + 𝐸)) − 𝜆)

2

,                        (54) 

 

Substituting the values of set-1 and set-2 into Eq. (46) along with the rational function solutions of Eq. (5), we get the following families 

of rational function solutions. 

 

𝑢9(𝑥, 𝑡) = −
((𝜆2+8𝜇)𝑘2−1)𝜈+𝑘

𝑘
+

6𝜈𝑘𝜆2(𝜉+𝐸)

𝜆(𝜉+𝐸)+2
−

3𝜈𝑘𝜆4(𝜉+𝐸)2

(𝜆(𝜉+𝐸)+2)2 ,                                                                                                                          (55) 

 

𝑢10(𝑥, 𝑡) = −
((𝜆2+8𝜇)𝑘2−1)𝜈+𝑘

𝑘
+

24𝜈𝑘𝜇(𝜆(𝜉+𝐸)+2)

𝜆(𝜉+𝐸)
−

48𝜈𝑘𝜇2(𝜆(𝜉+𝐸)+2)2

𝜆4(𝜉+𝐸)2 ,                                                                                                      (56) 

 

Substituting the values of set-1 and set-2 into Eq. (46) along with the exponential function solutions of Eq. (5), we derive the following 

families of exponential function solutions. 

 

𝑢11(𝑥, 𝑡) = −
((𝜆2+8𝜇)𝑘2−1)𝜈+𝑘

𝑘
−

12𝜈𝑘𝜆2

𝑒𝜆(𝜉+𝐸)−1
−

12𝜈𝑘𝜆2

(𝑒𝜆(𝜉+𝐸)−1)
2,                                                                                                                           (57) 

 

𝑢12(𝑥, 𝑡) = −
((𝜆2+8𝜇)𝑘2−1)𝜈+𝑘

𝑘
− 12𝜈𝑘𝜇(𝑒𝜆(𝜉+𝐸) − 1) −

12𝜈𝑘𝜆2(𝑒𝜆(𝜉+𝐸)−1)
2

𝜆2 ,                                                                                             (58) 

 

Substituting the values of set-1 and set-2 into Eq. (46) along with the other solutions of Eq. (5), we get the following solutions. 

 

𝑢13(𝑥, 𝑡) = −
((𝜆2+8𝜇)𝑘2−1)𝜈+𝑘

𝑘
−

12𝜈𝑘𝜆

𝜉+𝐸
−

12𝜈𝑘

(𝜉+𝐸)2,                                                                                                                                        (59) 

 

𝑢14(𝑥, 𝑡) = −
((𝜆2+8𝜇)𝑘2−1)𝜈+𝑘

𝑘
− 12𝜈𝑘𝜇𝜆(𝜉 + 𝐸) − 12𝜈𝑘𝜇2(𝜉 + 𝐸)2,                                                                                                     (60) 

 

For Eq. (47) to Eq. (60), 𝜉 = 𝑘𝑥 −
𝜈𝑡𝛼

𝛼
. 

If we compare our solutions with the solutions appeared in the literature before [46], we can see that our solutions are new in the con-

formable fractional derivative sense. 

4. Graphical illustration of the obtained solutions 

Graphical illustration is the proper way to understand the real physical significance of any real-world problems. In this section, with the 

aid of MATLAB software, we have shown the graphical representation of some results in the sense of conformable fractional derivative 

by choosing different fractional values. By assigning suitable values to the unknown parameters in order to visualize the real mechanism 

of the derived solutions. Among them, some acquired solutions have been plotted the studied equations which are shown in Figs. 1 – 10. 

4.1. Time fractional clannish random walker’s parabolic (CRWP) equation 

In order to visualize the produced solutions mechanism, the kink, periodic, singular periodic, and bright shaped profile have been 

observed in Figs. 1 – 4. Among them, the kink shaped profile of the solutions (13), and (14) are shown in Figs. 1 – 2 for various values of 

𝛼. We observed that when the fractional derivative order 𝛼 increased, the shape is closer to the known kink wave as the velocity of the 

propagation wave decreases. The kink profile keeps its height for various values of 𝛼. On the other hand, it should also be mentioned that 

the solutions (16) and (26) indicates the periodic and bright soliton profile, which are shown in Figs. 3 – 4, respectively.  
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4.2. Time fractional modified Kawahara equation 

The dynamics of the dark, periodic, and bright soliton solutions (31), (34), and (39) are shown in Figs. 5 – 7 for various values of 𝛼 . 
Remaining of the produced solutions signify the same physical tendency. 

4.3. Time fractional BBM-Burger equation  

The dynamics of the bright, periodic singular, and bright singular soliton solutions (47), (51), and (56) are shown in Figs. 8 – 10 for vari-

ous values of 𝛼 . Remaining of the derived solutions shapes signify the similar physical tendency which we described as earlier.  

It is noteworthy that the acquired solutions in this article have potential physical meaning for the underlying equations. In addition to the 

physical meaning, these solutions can be applied to identify the accuracy of numerical results and to help in the study of stability analysis. 

 

 
Fig. 1: Three-Dimensional (3D) Plot of the Solution (12) with (a) 𝛼 = 0.25, (b) 𝛼 = 0.5, and (c) 𝛼 = 1 Respectively, When 𝑎1 = 1, 𝜆 = 2.5, 𝜇 = 1, 𝑘 =
0.5, 𝐸 = 0. (d) Variation in Two-Dimensional (2D) Line Plot for Different Fractional Values. 

 

 
Fig. 2: Three-Dimensional (3D) Plot of Solution (14) with (a) 𝛼 = 0.25, (b) 𝛼 = 0.5, and (c) 𝛼 = 1 Respectively, When 𝑎1 = 1, 𝜆 = 2.5, 𝜇 = 1, 𝑘 =
0.5, 𝐸 = 0. (d) Variation in Two-Dimensional (2D) Line Plot for Different Fractional Values.  
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Fig. 3: Three-Dimensional (3D) Plot of Solution (16) with (a) 𝛼 = 0.25, (b) 𝛼 = 0.5, and (c) 𝛼 = 1 Respectively, When 𝑎1 = 1, 𝜆 = 1, 𝜇 = 2.5, 𝑘 =
0.9, 𝐸 = 0. (d) Variation in Two-Dimensional (2D) Line Plot for Different Fractional Values.  

 

 
Fig. 4: Three-Dimensional (3D) Plot of Solution (20) with (a) 𝛼 = 0.25, (b) 𝛼 = 0.5, and (c) 𝛼 = 1 Respectively, When 𝑎1 = 1, 𝜆 = 2, 𝜇 = 1, 𝑘 = 1, 𝐸 =
0. (d) Variation in Two-Dimensional (2D) Line Plot for Different Fractional Values.  

 

 
Fig. 5: Three-Dimensional (3D) Plot of Solution (31) with (a) 𝛼 = 0.25, (b) 𝛼 = 0.5, and (c) 𝛼 = 1 Respectively, when 𝜆 = 3, 𝜇 = 1, 𝜀 = 0.05, 𝛿 =
1, 𝑘 = 1, 𝐸 = 0. (d) Variation in Two-Dimensional (2D) Line Plot for Different Fractional Values.  
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Fig. 6: Three-Dimensional (3D) Plot of Solution (34) with (a) 𝛼 = 0.25, (b) 𝛼 = 0.5, and (c) 𝛼 = 1 Respectively, when 𝜆 = 1, 𝜇 = 3, 𝜀 = 0.05, 𝛿 =
1, 𝑘 = 1, 𝐸 = 0. (d) Variation In Two-Dimensional (2D) Line Plot for Different Fractional Values.  

 

 

 
Fig. 7: Three-Dimensional (3D) Plot of Solution (39) with (a) 𝛼 = 0.25, (b) 𝛼 = 0.5, and (c) 𝛼 = 1 Respectively, when 𝜆 = 2, 𝜇 = 1, 𝜀 = 0.05, 𝛿 =
1, 𝑘 = 1, 𝐸 = 0. (d) Variation in Two-Dimensional (2D) Line Plot for Different Fractional Values. 

 

 

 
Fig. 8: Three-Dimensional (3D) Plot Solution (47) with (a) 𝛼 = 0.25, (b) 𝛼 = 0.5, and (c) 𝛼 = 1 Respectively, when 𝜆 = 2.5, 𝜇 = 1, 𝑘 = 0.05, 𝑣 =
0.5, 𝐸 = 0. (d) Variation in Two-Dimensional (2D) Line Plot for Different Fractional Values. 
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Fig. 9: Three-Dimensional (3D) Plot of Solution (51) with (a) 𝛼 = 0.25, (b) 𝛼 = 0.5, and (c) 𝛼 = 1 Respectively, when 𝜆 = 1, 𝜇 = 2.5, 𝑘 = 0.05, 𝑣 =
0.5, 𝐸 = 0. (d) Variation in Two-Dimensional (2D) Line Plot for Different Fractional Values.  

 

 

 
Fig. 10: Three-Dimensional (3D) Plot of Solution (56) with (a) 𝛼 = 0.25, (b) 𝛼 = 0.5, and (c) 𝛼 = 1 Respectively, when 𝜆 = 2.5, 𝜇 = 0, 𝑘 = 0.05, 𝑣 =
1, 𝐸 = 0. (d) Variation in Two-Dimensional (2D) Line Plot for Different Fractional Values.  
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