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Abstract 

 

In this paper, free vibration of a new type of tapered beam, with exponentially varying thickness, resting on a linear 

foundation is analyzed. The solution is based on a semi-analytical technique, the differential transform method (DTM). 

Applying DTM, nonlinear partial differential equations of the varying thickness beam are transformed into algebraic 

equations, which are then solved to obtain the solution. An Euler-Bernoulli beam with a number of boundary conditions 

and different exponential factor is taken into account. Results have been compared to the 4th order Runge-Kutta, and 

where possible with DQEM and analytical solution. These comparisons prove the preciseness of this method, based on 

which DTM can be considered as a powerful framework for eigenvalue analysis of new type of tapered beams. 
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1. Introduction 

The study of vibration of a beam on an elastic foundation has been a field of great interest to many researchers in civil 

and mechanical engineering, including a pile embedded on the soil and a beam rested on the ground. There are a 

number of foundation models, among which Winkler model is the most well-known and widely used mechanical 

model. 

Dynamic behavior of a beam on elastic foundation has been the subject of many researches in the past. Lin [1] was 

among the first who dealt with the vibration of a beam on elastic supports. Valsangkar and Pradhanang [2] and 

Franciosi and Masi [3] investigated Euler-Bernoulli beam on two-parameter model soil foundation, while De Rosa [4] 

and Ruta [5] did the same for Timoshenko beams. Chen employed the differential quadrature element method (DQEM), 

to investigate the vibration of beams on Winkler [6] and Pasternak [7] foundations. Hosing et al. [8] have solved natural 

flexural vibrations of a continuous beam on discrete elastic support. DTM, first proposed by Zhou [9] , was employed to 

find free vibration of a constant thickness beam on elastic soil by Catal [10] and Balkaya et al. [11] . 

Other than the above, in recent years, a few researches have been conducted concentrating on exponential characteristic 

of beams. Awodola [12] solve the problem of vibration of a beam under exponentially varying magnitude moving load. 

Mao and Pietrzko [13] used the Adomian decomposition method (ADM) to examine the free vibration of a beam with a 

continuously exponential variation of width and a constant thickness along the length. 

In this paper, we investigate natural frequencies of free vibration of an Euler-Bernoulli beam with exponential thickness 

supported by a Winkler foundation. In section 2, Normalized governing equations are derived, and DTM is briefly 

introduced. In section 3, the solution procedure is fully explained, and in section 4 semi-analytical results based upon 

the derived formula are presented. Finally, the authors draw a conclusion based on the obtained results in section 5. 
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2. Mathematical formulation 

2.1. Equation of motion 
 

Vibration of an exponential beam resting on Winkler foundation as shown in Fig.1 is analyzed here. The motion of an 

Euler-Bernoulli beam can be characterized by the following equation: 
  

   
      

   

   
       

   

   
                                                                                                                                  (1) 

In which                  and      are the mass density (     ), cross-sectional area (  ), transverse deflection (m), 

Young’s Modulus (Pa), and area moment of inertia about the neutral axis (  ), respectively. k is the spring constant in 

Winkler model soil, and it is simulated by “a series of closely spaced, mutually independent, linear elastic vertical 

springs” [11] . 

 
Fig. 1: Geometry of the Exponential Beam on a Linear Foundation 

 

For a constant E and a variable cross section with respect to the horizontal axis ( ), as illustrated in Fig.1, we can 

expand eq. (1) to obtain: 
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The system is assumed to have harmonic vibration with                   . Thus, the solution can be expressed as: 
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Denoting the beam’s breadth and depth by      and       
  , respectively, one can easily write: 

           
     

 

  
    

 

 
    

       

Where   is a factor to show exponential rate of the beam. Substituting these relations into Eq. (3) the following relation 

is obtained: 
 

 
     

        

   
       

         

   
       

          

   
        

                                                           (4) 

 

2.2. Normalization 
 

Normalized parameters for the exponential beam on linear foundation can be determined by defining: 
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Where   is the normalized natural frequency? Applying these parameters to Eq. (4) the non-dimensional form of 

equation of motion is in the form of: 
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2.3. Differential Transform Method 
 

The DTM is based on the Taylor series expansion. However, the main advantage of this method is that it computes the 

terms of the equation with a recursive formulation which dramatically reduces the costs of calculations. DT technique 

converts differential equations to a set of algebraic equations. By solving these equations, a closed-form or a recursive 

solution can be obtained. 

The Taylor series expansion of a function      about a point      is given by: 

                
  

                                                                                                                                                   (7) 

     
 

  
 
   

    
    

                                                                                                                                                             (8) 

Uppercase and lowercase letters were used for transformed function      (k
th

 order Differential transform) and the 

original function     , respectively. In actual applications, computing a finite number of terms suffices: 

                
  

                                                                                                                                                  (9) 

The above equation is approximately true, under the condition that        
      

      becomes negligibly small. 

The appropriate value for N depends on the rate of convergence of the series and the number of natural frequencies to 
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be calculated. Some fundamental theorems of DTM are listed in table 1. Their derivation and proofs are fully covered in 

[14], [15], and [16]. 

 
Table 1: Fundamental Operations of One-Dimensional DTM 

Original Function Transformed Function 

                                   

                                
     

     
      

                                  

                 

               
  

  
  

 

2.4. Solution procedure 
 

First, we take the differential transform of Eq. (6) which represents the equation of motion for an exponential Euler-

Bernoulli beam supported on Winkler foundation. According to table 1, the following relation can be obtained: 

 
  

  

        

      

 
               

  

  

        

      
         

       
  

  

        

      
         

          

  
      

  
       

                                                                                                                                                      (10) 

This equation can be rearranged to give a recursive relation as follows: 

       
  

      
   

  

  

        

      
         

       
  

  

        

      
         

       
  

  

        

      
         

    

  k  i=0k 3ii!U                                                                                                                                           (11) 

Normalized boundary conditions and their associated DTM transformations are presented in table 2. 

 
Table 2: Normalized Boundary Conditions and Their Associated DTM Transformations 

BCs Original form  DTM transform 

Fixed:    
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Simply supported:    
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Free: 
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     ;  
                               

     . 

 

Now, for the sake of brevity, the solution procedure is only explained for the cantilever beam. The same procedure is 

valid for other boundary conditions, and in section 4 the results of all the above mentioned conditions are covered.  

Eq. (11) reveals that if the first four terms were known (i.e. U(0), U(1), U(2), U(3)) all the other terms could be obtained 

by the recursive relation. Therefore, for the cantilever beam we have: 

                                                                                                                                                                       (12) 

                                                                                                                                                                     (13) 

Here, the values of      and      are set as unknown parameters, based on which the value of      for           

can now be calculated. Substituting these values in the remaining boundary conditions at     , and by some 

rearrangement we have: 

       
      

    
  
    

 
                                                                                                                                                             (14) 

In which     is a polynomial function of  . In order to obtain nontrivial solutions, we must equate the determinant to 

zero:                            . The roots of this equation will ultimately give the natural frequencies. 

3. Results and discussion 

In the first step, results are compared with DQEM [6] , 4
th

 order Runge-Kutta and analytical solutions. Table 3 

illustrates the results for a simply supported uniform beam resting on a Winkler foundation. 

It is observed from table 3 that the present results from DTM are more accurate than DQEM and RK4, and very close to 

analytical values. In the third natural frequency, DTM results are equal to the analytical value, while DQEM [6] and 

RK4 show small deviations. 

In table 4, the results are shown for the cantilever and fixed-fixed case, respectively. A good agreement between the 

results is observed. 
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Table 3: Natural Frequencies of a Simply Supported Uniform Beam Resting on Winkler Foundation 

Method                

DTM (     9.92014 39.4911 88.8321 157.9168 246.7421 

DQEM [6]  9.92014 39.4913 89.4002 _ _ 

RK4 9.92382 39.6912 89.4774 159.3005 249.6820 

Exact solution 9.92014 39.4911 88.8321 157.9168 246.7421 

 
Table 4: Natural Frequencies of a Cantilever and Fix-Fix Beam Resting on Winkler Foundation 

Beam type Method                

cantilever 

DTM (     3.65546 22.0572 61.7053 120.906 199.862 

DQEM [6]  3.65544 22.0572 61.7057 120.911 199.894 

RK4 3.65563 22.0954 61.9724 121.039 200.264 

fixed- fixed 

DTM (     22.3956 61.6809 120.9075 199.862 298.557 

DQEM [6]  22.3956 61.6811 120.910 199.885 298.675 

RK4 22.40599 61.84613 122.04241 202.05676 301.86977 

 

In the next step, natural frequencies are calculated for different values of  . In order to show the accuracy of the results, 

the convergence of the solution should be examined. The convergence of the first five natural frequencies with respect 

to the number of terms, N, is depicted for the cantilever boundary condition in Fig. 2.  

 

(a) 

 

(b) 

 

(c) 

 
Fig. 2: Convergence of   Vs. N for Cantilever Beam a)      , b)      , c)       

 

Two conclusions can be drawn from Fig. 2. First, to obtain higher natural frequencies more terms should be considered. 

For example, while N=10 leads to valid fundamental frequency, N=80 should be chosen for the fifth natural frequency. 

Second, increasing the value of   will delay the convergence. For instance, in order to get a four-digit precision in the 
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fifth natural frequency, computation of only 55 terms is sufficient for       (Fig. 2-a) while, this number increases to 

around 80 for       (Fig. 2-c). In fact, higher values of , leads to faster exponential changes in the thickness, and 

more terms are needed for convergence. 

Finally, table 5 shows the natural frequencies of the exponential beam for different values of    and different boundary 

conditions. Choosing the right number of terms (N) depends on the value of  , the desired precision and the number of 

natural frequencies to be obtained. Here, all calculations were performed so that the results are independent of N. 

 
Table 5: Natural Frequencies of an Exponential Beam for Different Values of   

Exponential parameter fixed-fixed simply-simply 

                     

-0.2 
DTM 20.2933 55.8197 109.3690 8.9686 35.7183 80.3320 

RK4 20.31180 

 

56.14303 

 

110.01789 

 

8.97094 35.85730 81.40257 

-0.1 DTM 21.3125 58.6755 115.0026 9.4379 37.5621 84.4878 
RK4 21.33475 59.06035 116.03771 

 

9.44097 37.73107 85.83340 

0 DTM 22.3956 61.6809 120.9075 9.9201 39.4911 88.8321 
RK4 22.40599 

 

61.84613 

 

122.04241 

 

9.92382 39.69120 89.47743 

0.1 DTM 23.5469 64.8439 127.0962 10.4145 41.5085 93.3717 
RK4 23.59329 65.62659 129.97674 10.41866 41.74078 95.34377 

0.3 DTM 26.0737 71.6765 140.3752 11.4363 45.8224 103.0659 
RK4 26.13118 72.72102 144.00256 11.44065 46.12065 105.78168 

0.5 
DTM 28.9369 79.2460 154.9464 12.4959 50.5314 113.6291 
RK4 29.00333 80.59243 159.74265 12.49926 50.89548 117.22874 

 

In addition, the first three vibrational mode shapes for different values of   are depicted in Fig. 3-5 for the different 

boundary conditions. It is observed that the value of   directly affects the vibrational modes of the beam as expected. 

 

 
Fig. 3: The First Three Vibrational Modes for the Fixed-Fixed Boundary Condition 

 

 
Fig. 4: The First Three Vibrational Modes for the Simply Supported Boundary Condition 
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Fig. 5: The First Three Vibrational Modes for the Cantilever Boundary Condition 

 

4. Conclusion 

In this study, the vibration analysis of a new type tapered beam, exponential Euler-Bernoulli beam, supported by a 

Winkler foundation was investigated using a semi-analytical method, the DTM. Natural frequencies of the beam were 

obtained by use of this method, and the convergence of the results for different values of exponential factor (   was 

examined. Comparisons were made with DQEM from the literature, 4
th

 order Runge-Kutta and exact solution, and 

excellent agreement was observed. The DTM was seen to be more accurate and computationally more cost effective 

than these two methods. 
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