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Abstract 
 

In this work, we decide the proliferation of nonlinear voyaging wave answers for the dominant nonlinear pseudo-parabolic physical model 

through the (1+1)-dimensional Oskolkov equation. With the assistance of the advance -expansion strategy compilation of disguise adapta-

tion an innovative version of interacting analytical solutions regarding, hyperbolic and trigonometric function with some refreshing param-

eters. We analyze the behavior of these solutions of Oskolkov equations for the specific values of the reared parameters such as rouge 

wave, multi solution, breather wave bell and kink shape etc. The dynamics nonlinear wave solution is examined and demonstrated in 3-D 

and 2-D plots with specific values of the perplexing parameters are plotted. The advance -expansion method solid treatment for looking 

through fundamental nonlinear waves that advance assortment of dynamic models emerges in engineering fields. 

 
Keywords: Oskolkov Equation; The Advance -Expansion Method; Nonlinear Pseudo-Parabolic Physical Models; Bright and Dark Rouge Wave; Kinky 

Periodic Wave; Breather Wave. 

 

1. Introduction 

The theoretical examinations of reverberation physical wonders by nonlinear evolution conditions become basic step by step. Since the 

analytic and explicit traveling wave arrangement of nonlinear evolution equations can be explain different complex wonders in assorted 

fields of nonlinear science, such as fluid mechanics, nuclear physics, solid-state physics, chemical physics, optical fibre and geochemistry, 

nonlinear lattices and also in shallow water etc. Numerous researchers arranged through NEEs to build voyaging wave arrangement by 

actualize a few strategies. The techniques that are entrenched in late writing, for example, extended Kudryashov method [1], Modefied 

simple equation method [2], New extended (G’/G) expansion method [3], [4], Darboux transformation [5], trial solution method [6], Exp-

Function Method [7], Multiple Simplest Equation Method [8]. Nofal applied Simple equation method for nonlinear partial differential 

equations [10]. Several authors are solved some models by simple equation method [10-13].  

Pseudo parabolic model is one kind of partial differential equations in which the time derivative emerged in highest order derivative and 

they have been misusing for various regions of mathematics and physics for example, for fluid flow in fissured rock, consolidation of clay, 

shear in second-order fluids, thermodynamics and propagation of long waves of small amplitude These days, much consideration has been 

paid to examine NEEs, for example, Pseudo parabolic model [14-20]. Note that a totally integrable Pseudo parabolic model gives innovative 

and explicit different type exact voyaging wave arrangement.  

In the present work, we consider the one dimensional Oskolkov condition. Implementing the advance 𝑒𝑥𝑝( − 𝜙(𝜉)) -expansion strategy 

[21]. We attain the several wave solutions. We utilize numerical recreation to think about the one dimensional Oskolkov condition. We 

consider (1+1) Dimensional Oskolkov Equation in the accompanying structure  

 

𝑈𝑡 − 𝛽𝑈𝑥𝑥𝑡 − 𝛼𝑈𝑥𝑥 + 𝑈𝑈𝑥 = 0.                                                                                                                                                                   (1) 

 

This equation is pseudoparabolic equation and one-dimensional analogue of the oskolkov system 

 

(1 − 𝛾𝛻2)𝑈𝑡 = 𝛼𝛻2𝑈 − (𝑈 • 𝛻)𝑈 − 𝛻2𝑝 + 𝑓, where 𝛻 • 𝑈 = 0.                                                                                                                
(2) 

 

This system illustrates the dynamics of an incompressible viscoelastic Kelvin-Voigt fluid. It was indicated in [14-20] that the parameter γ 

can be negative and the negativeness of the parameter γ does not deny the physical meaning of equation (2).  

 

We implemented the advance𝑒𝑥𝑝( − 𝜙(𝜉)) -expansion strategy to solve equation (1) and obtained new solutions which could not be at-

tained in the past. Mamunur and Bashar found exact and explicit solution from Oskolkov equation with the help of simple equation method 
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[14], Mamunur applied MSE Schema [15] Faruk applied the tanh-coth strategy for some nonlinear pseudoparabolic conditions to got 

precise arrangement [16], Turgut Propagation of nonlinear shock waves or the summed up oskolkov condition and its dynamic movements 

within the sight of an outside intermittent annoyance by actualize unified technique [17] and others creator fathom this model by various 

predominant strategy [18-20]. 

The article is set up as pursues: In section 2, the advance 𝑒𝑥𝑝( − 𝜙(𝜉)) -expansion scheme has been talked about. In segment 3, we apply 

this plan to the nonlinear development conditions raised previously. In section 4, represents Results & Discussion and in section 5, ends 

are given. 

2. The advance 𝒆𝒙𝒑( − 𝝓(𝝃)) -expansion method 

In this section, we will precis𝑒𝑥𝑝( − 𝜙(𝜉)) -expansion method step by step. Consider a nonlinear partial differential equation in the fol-

lowing form, 

 

𝑅(𝑈, 𝑈𝑥𝑥 , 𝑈𝑥𝑧, 𝑈𝑥𝑥 ⥂, 𝑈𝑥𝑦 , ⥂ 𝑈𝑥𝑡𝑡 , … ⥂⥂⥂⥂⥂⥄⥄ ⋯ ) = 0.                                                                                                                    (3) 

 

Where𝑈 = 𝑈(𝑥, 𝑦, 𝑧, 𝑡) is an unknown function, 𝑅 is a polynomial of𝑈, its different type partial derivatives, in which the nonlinear terms 

and the highest order derivatives are involved. 

Step-1. Now we consider a transformation variable to convert all independent variable into one variable, such as 𝑈(𝑥, 𝑡) = 𝑢(𝜉),   

 

𝜉 = 𝑘𝑥 + 𝑙𝑦 + 𝑚𝑧 ± 𝑉𝑡.                                                                                                                                                                               (4) 

 

By implementing this variable Eq. (4) permits us reducing Eq. (3) in an ODE for 𝑢(𝑥, 𝑡) = 𝑢(𝜉) 

 

𝑃(𝑢, ⥄ 𝑢′, ⥄ 𝑢″, ⋯ ⥄⥄⥄ ⋯ ⥄⥄ ⋯ ) = 0.                                                                                                                                                  (5) 

 

Step-2. Suppose that the solution of ODE Eq. (5) can be expressed by a polynomial in 𝑒𝑥𝑝( − 𝜙(𝜉)) as follows 

 

𝑢 = ∑ 𝑎𝑖 𝑒𝑥𝑝( − 𝜙(𝜉))𝑖𝑚
𝑖=0 , 𝑎𝑚 ≠ 0.                                                                                                                                                            (6) 

 

where the derivative of 𝜙(𝜉) satisfies the ODE in the following form  

 

𝜙′(𝜉) = −𝜆 𝑒𝑥𝑝( − 𝜙(𝜉)) − 𝜇 𝑒𝑥𝑝( 𝜙(𝜉)).                                                                                                                                                 (7) 

 

then the solutions of ODE Eq. (7) are 

Case I: 

Hyperbolic function solution (when𝜆𝜇 < 0): 

 

𝜙(𝜉) = 𝑙𝑛 (√
𝜆

−𝜇
𝑡𝑎𝑛ℎ( √−𝜆𝜇(𝜉 + 𝐶))).  

 

And 

 

𝜙(𝜉) = 𝑙𝑛 (√
𝜆

−𝜇
𝑐𝑜𝑡ℎ( √−𝜆𝜇(𝜉 + 𝐶))).  

 

Case II:  

Trigonometric function solution (when𝜆𝜇 > 0): 

 

𝜙(𝜉) = 𝑙𝑛 (√
𝜆

𝜇
𝑡𝑎𝑛( √𝜆𝜇(𝜉 + 𝐶))).  

 

And 

 

𝜙(𝜉) = 𝑙𝑛 (−√
𝜆

𝜇
𝑐𝑜𝑡( √𝜆𝜇(𝜉 + 𝐶))).  

 

Case III: 

when 𝜇 > 0and 𝜆 = 0 

 

𝜙(𝜉) = 𝑙𝑛 (
1

−𝜇(𝜉+𝐶)
).  

 

Case IV: 

When 𝜇 = 0and 𝜆 ∈ ℜ 

𝜙(𝜉) = 𝑙𝑛(𝜆(𝜉 + 𝐶)), where C is integrating constants and λμ < 0 or λμ > 0 depends on sign of μ.  

Step-3. By substituting Eq. (6) into Eq.(5) and using the ODE (7), collecting all same order of 𝑒𝑥𝑝( 𝜙(𝜉)) together, then we execute an 

polynomial form of𝑒𝑥𝑝( 𝜙(𝜉)). Equating each coefficients of this polynomial to zero, yields a set of algebraic system. 

Step-4. Assume the estimation of the constants can be gotten by fathoming the mathematical conditions got in step 4. Substituting the 

estimations of the constants together with the arrangements of Eq. (7), we will acquire new and far reaching precise traveling wave ar-

rangements of the nonlinear development Eq. (3). 
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3. Application of the method 

In this section we implement the advance𝑒𝑥𝑝( − 𝜙(𝜉)) -expansion method for (1+1) dimensional Oskolkov equation in the following 

form:  

 

𝑈𝑡 − 𝛽𝑈𝑥𝑥𝑡 − 𝛼𝑈𝑥𝑥 + 𝑈𝑈𝑥 = 0.                                                                                                                                                                   (8) 

 

Where𝛽, 𝛼are arbitrary constants and𝑈(𝑥, 𝑡) is an unknown function. Using the traveling wave variable𝑈(𝑥, 𝑡) = 𝑈(𝜉) and𝜉 = 𝑘𝑥 −
𝜔𝑡where𝑘is a constant and𝜔is wave speed. Now we renovate the Eq. (8) into the following Ordinary differential equation. 

 

2𝑘2𝜔𝛽𝑈″ − 2𝛼𝑘2𝑈′ − 2𝜔𝑈 + 𝑘𝑈2 = 0.                                                                                                                                                     (9) 

 

Where symbolize prime represent the derivative with respect to𝜉. 
Now we compute the balance number of Eq. (9) between the linear term 𝑈″and the nonlinear term𝑈2 is𝑁 = 2. so the solution of the Eq. 

(9) takes the following form 

 

𝑈(𝜉) = 𝐴0 + 𝐴1 𝑒𝑥𝑝(−𝜙(𝜉)) + 𝐴2 𝑒𝑥𝑝(−𝜙(𝜉))
2

.                                                                                                                                   (10) 

 

Differential Eq. (10) with respect to𝜉and substituting the value of𝑈, 𝑈′, 𝑈″ into the Eq. (9) and equating the coefficients of𝑒𝑖𝜙(𝜉)equal to 

zero (where𝑖 = 0, ±1, ±2. . . . ...). 
Solving those system of equations, we attain the two sets solutions 

Set-1:  

 

𝑘 = ±
1

12

√6

√𝛽𝜆𝜇
 , 𝜔 = ±

1

10

𝛼

𝛽√−𝜆𝜇
, 𝐴0 =

1

10

𝛼√6𝛽𝜆𝜇

𝛽√−𝜆𝜇
 , 𝐴1 = ∓

1

5

𝛼√6𝛽𝜆𝜇

𝛽𝜇
, 𝐴2 = −

1

10

𝜆𝛼√6

𝜇𝜆√−𝛽
.  

 

Set-2:  

 

𝑘 = ±
1

2√−6𝛽𝜆𝜇
 , 𝜔 = ±

1

10

𝛼

√−𝜆𝜇𝛽
, 𝐴0 =

3

10

𝛼√−6𝛽𝜆𝜇

√−𝜆𝜇𝛽
 , 𝐴1 = ±

1

5

𝛼√−6𝛽𝜆𝜇

𝛽𝜇
 , 𝐴2 = −

3

5

𝜆𝛼

𝜆𝜇√6𝛽
. 

 

Case-I: When 𝜆𝜇 < 0 we get following hyperbolic solution 

 

Family-1 

 

𝑈1,2(𝑥, 𝑡) =
1

10

𝛼√6𝛽𝜇𝜆

𝛽√−𝜆𝜇
∓

1

5

𝛼√𝛽𝜆𝜇

𝛽𝜇√
−𝜆

𝜇
  𝑡𝑎𝑛ℎ (√−𝜆𝜇 (𝜉+𝐶)

+
1

10

√6𝜆𝛼𝜇

𝜆𝜇√−𝛽 𝑡𝑎𝑛ℎ(√−𝜆𝜇(𝜉+𝐶))2
. 

 

𝑈3,4(𝑥, 𝑡) =
1

10

𝛼√6𝛽𝜇𝜆

𝛽√−𝜆𝜇
∓

1

5

𝛼√𝛽𝜆𝜇

𝛽𝜇√
−𝜆

𝜇
  𝑐𝑜𝑡ℎ (√−𝜆𝜇 (𝜉+𝐶)

+
1

10

√6𝜆𝛼𝜇

𝜆𝜇√−𝛽 𝑐𝑜𝑡ℎ(√−𝜆𝜇(𝜉+𝐶))2
. 

 

where, 

 

𝜔 = ±
1

10

𝛼

𝛽√−𝜆𝜇
 and 𝜉 = ±

1

12

√6

√𝛽𝜆𝜇
 𝑥 ∓

1

10

𝛼

𝛽√−𝜆𝜇
 𝑡. 

 

Family-2 

 

𝑈5,6(𝑥, 𝑡) =
3

10

𝛼√−6𝛽𝜇𝜆

𝛽√−𝜆𝜇
±

1

5

𝛼√−𝛽𝜆𝜇

𝛽𝜇√
−𝜆

𝜇
  𝑡𝑎𝑛ℎ (√−𝜆𝜇 (𝜉+𝐶)

+
3

5

𝜆𝛼𝜇

𝜆𝜇√−6𝛽 𝑡𝑎𝑛ℎ(√−𝜆𝜇(𝜉+𝐶))2
. 

 

𝑈7,8(𝑥, 𝑡) =
3

10

𝛼√−6𝛽𝜇𝜆

𝛽√−𝜆𝜇
±

1

5

𝛼√−𝛽𝜆𝜇

𝛽𝜇√
−𝜆

𝜇
  𝑐𝑜𝑡ℎ (√−𝜆𝜇 (𝜉+𝐶)

+
3

5

𝜆𝛼𝜇

𝜆𝜇√−6𝛽 𝑐𝑜𝑡ℎ(√−𝜆𝜇(𝜉+𝐶))2
. 

 

where, 

 

𝜔 = ±
1

10

𝛼

√−𝜆𝜇𝛽
 and 𝜉 == ±

1

2√−6𝛽𝜆𝜇
 𝑥 ∓

1

10

𝛼

√−𝜆𝜇𝛽
 𝑡. 

 

Case-II: When 𝜆𝜇 > 0 we get following trigonometric solution 

 

Family-3 

 

𝑈9,10(𝑥, 𝑡) =
1

10

𝛼√6𝛽𝜇𝜆

𝛽√−𝜆𝜇
∓

1

5

𝛼√6𝛽𝜆𝜇

𝛽𝜇√
𝜆

𝜇
  𝑡𝑎𝑛 (√𝜆𝜇 (𝜉+𝐶)

−
1

10

√6𝜆𝛼𝜇

√𝛽𝜆𝜇√−𝜆𝜇 𝑡𝑎𝑛(√𝜆𝜇(𝜉+𝐶))2
. 
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𝑈11,12(𝑥, 𝑡) =
1

10

𝛼√6𝛽𝜇𝜆

𝛽√−𝜆𝜇
±

1

5

𝛼√6𝛽𝜆𝜇

𝛽𝜇√
𝜆

𝜇
  𝑐𝑜𝑡 (√𝜆𝜇 (𝜉+𝐶)

−
1

10

√6𝜆𝛼𝜇

√𝛽𝜆𝜇√−𝜆𝜇 𝑐𝑜𝑡(√𝜆𝜇(𝜉+𝐶))2
. 

 

Where, 

 

𝜔 = ±
1

10

𝛼

𝛽√−𝜆𝜇
 and 𝜉 = ±

1

12

√6

√𝛽𝜆𝜇
 𝑥 ∓

1

10

𝛼

𝛽√−𝜆𝜇
 𝑡. 

 

Family-4 

 

𝑈13,14(𝑥, 𝑡) =
3

10

𝛼√−6𝛽𝜇𝜆

𝛽√−𝜆𝜇
±

1

5

𝛼√−6𝛽𝜆𝜇

𝛽𝜇√
𝜆

𝜇
  𝑡𝑎𝑛 (√𝜆𝜇 (𝜉+𝐶)

−
3

5

𝜆𝛼𝜇

√−6𝛽𝜆𝜇√−𝜆𝜇 𝑡𝑎𝑛(√𝜆𝜇(𝜉+𝐶))2
. 

 

𝑈15,16(x, t) =
3

10

α√−6βμλ

β√−λμ
∓

1

5

α√−6βλμ

βμ√
λ

μ
  cot (√λμ (ξ+C)

−
3

5

λαμ

√−6βλμ√−λμ cot(√λμ(ξ+C))2
. 

 

where, 

 

ω = ±
1

10

α

√−λμβ
 and ξ == ±

1

2√−6βλμ
 x ∓

1

10

α

√−λμβ
 t. 

 

Case III & Case IV: 

When λ = 0 the executing value of 𝐴0 and 𝐴2 are undefined. So the solution cannot be obtained. For this purpose this case is rejected. 

Similarly when μ = 0 the executing value of 𝐴0, 𝐴1 and 𝐴2 are undefined. So the solution cannot be obtained. So this case is also rejected. 

4. Results and discussions 

4.1. Physical explanation 

In this subsection, we talk about the physical portrayal of the got exact and solitary wave answers for the (1+1) dimensional Oskolkov 

condition by means of advance𝑒𝑥𝑝(−𝜙(𝜉))-expansion method. There is various type of traveling wave solutions that one of particular 

interest in solitary wave theory. For some special values of the physical parameters, we obtain the traveling wave solutions as follows: 

Figure 1 represents Dark bell shape solution of the imaginary part of𝑈13for the parametric values 𝜇 = 1, 𝜆 = 0.4, 𝛽 = 1, 𝛼 = −2and 𝐶 =
1 within−10 ≤ 𝑥, 𝑡 ≤ 10. Figure 2 represents Bright bell shape solution of the imaginary part of𝑈13for the parametric values 𝜇 = 1, 𝜆 =
0.4, 𝛽 = 1, 𝛼 = 2, 𝐶 = 1 within−10 ≤ 𝑥, 𝑡 ≤ 10. Figure 3 represents Bright kink shape solution of the absolute value of 𝑈15for the para-

metric values 𝜇 = 3, 𝜆 = 4, 𝛽 = 1, 𝛼 = −2, 𝐶 = 1 within−10 ≤ 𝑥, 𝑡 ≤ 10. Figure 4 represents Dark kink shape solution of the absolute 

value of 𝑈15for the parametric values 𝜇 = 3, 𝜆 = 4, 𝛽 = 1, 𝛼 = 2, 𝐶 = 1 within−10 ≤ 𝑥, 𝑡 ≤ 10. Figure 5 represents Multi Rouge wave 

shape solution of the real part of 𝑈11for the parametric values 𝜇 = 1, 𝜆 = 2, 𝛽 = 0.2, 𝛼 = −1, 𝐶 = 1 within−10 ≤ 𝑥, 𝑡 ≤ 10. Figure 6 

represents Rouge wave shape solution of the real part of 𝑈1 for the parametric values 𝜇 = −1, 𝜆 =
1

5
, 𝛽 = 10, 𝛼 = −25, 𝐶 = 1 

within−10 ≤ 𝑥 ≤ 10 and −6 ≤ 𝑡 ≤ 4. 

4.2. Graphical explanation 

This sub-section represents the graphical representation of the (1+1)-dimensional oskolkov equation. By using mathematical software 

Maple 18, Contour, 3D and 2D plots of some achieved solutions have been shown in Figure 1 to Figure 6 to envisage the essential instru-

ment of the original equations. 

 

 
 

Fig. 1: Dark Bell Shape Solution of 𝑈13. the Left Figure Shows the 3D Plot and the Right Figure Shows the 2D Plot For𝑥 = 1. 
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Fig. 2: Bright Bell Shape Solution of 𝑈13. the Left Figure Shows the 3D Plot and the Right Figure Shows the 2D Plot For𝑥 = 1. 

 

 

 

Fig. 3: Bright Kink Shape Solution of 𝑈15. the Left Figure Shows the 3D Plot and the Right Figure Shows the 2D Plot For𝑥 = 1. 

 

 

 

Fig. 4: Dark Kink Shape Solution of 𝑈15. the Left Figure Shows the 3D Plot and the Right Figure Shows the 2D Plot For𝑥 = 1. 

 

 

 

Fig. 5: Multi Rouge Wave Shape Solution of 𝑈11. the Left Figure Shows the Contour Plot and the Right Figure Shows the 3D Plot. 
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Fig. 6: Rouge Wave Shape Solution of 𝑈1. 

5. Conclusion 

In this segment, we have seen that two kinds of traveling wave arrangements as far as hyperbolic and trigonometric capacities for the (1+1)-

dimensional Oskolkov equation is effectively discovered by utilizing the advance𝑒𝑥𝑝( − 𝜙(𝜉)) -expansion method. From our outcomes 

got in this paper, we finish up the advance𝑒𝑥𝑝( − 𝜙(𝜉)) -expansion method strategy is amazing, powerful and helpful. The exhibition of 

this technique is dependable, basic and gives numerous new arrangements. As an outcomes, the progressed - extension technique shows a 

significant method to discover novel voyaging wave arrangements as far as capacity from which we can fabricate exceptionally Rouge 

wave arrangement, solitary and periodic wave arrangement. The got arrangements in this paper uncover that the technique is a powerful 

and effectively material of defining more definite voyaging wave arrangements than others strategy for the nonlinear advancement condi-

tions emerging in numerical physical science. 
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