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Abstract 
 

This work aims to investigate the correlation between the shear modulus and the Young’s modulus of some pore-free polycrystalline 

ceram-ics. Our study shows that the shear modulus correlates quasi-linearly with the Young’s modulus. The best fit was obtained using 

the linear model. The fit of the shear modulus G as a function of the Young modulus E obeys this linear expression: G = 0.43E - 7.7 

(where both G and E are expressed in GPa). The coefficient of the correlation was found at around 0.994. Our expression was used to 

predict the shear modulus G of some other polycrystalline ceramics, especially: Dy2O3, Er2O3, and Y2O3 materials, which are estimated 

at around 65.6, 72.4, and 51.8 GPa, respectively. We attempt also to estimate the Vickers hardness of our materials of interest using an 

empirical expression of the literature. Unfortunately our predicted results are larger than those reported previously in the literature. 
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1. Introduction 

Elastic deformation under external stress is one of the most important considerations in structural applications of solids [1]. Indeed, elas-

tic properties of materials are commonly required in computer aided design and manufacturing techniques to simulate a product’s behav-

ior under variable conditions of external stress and temperature [1]. 

Using different theoretical approaches, semi-empirical and empirical models, many works [2-28] investigated and analyzed the relations 

between different parameters for several materials with different crystallographic structures.  

Until now, reported literature showed very little attention has been paid to the investigation of the correlation between the different elas-

tic moduli of polycrystalline ceramics and the relation between the different elastic moduli is still to be discussed in comparison with 

these reported for the porosity. 

Using a reactive sintering method, Zhang et al. [18] synthesized porous chromium carbide (Cr3C2) ceramics, which exhibit a uniform and 

accessible porous structure comprised of three-dimensional connected struts. Young's modulus of the ceramics synthesized was measured 

by dynamic mechanical analysis (DMA). They also developed a semi-empirical model basing on the generalized mixture rule (GMR), to 

describe the porosity dependence of Young's modulus for this ceramic. 

Wachtman et al. [19] reported the essential data on the ceramic materials in their book ‘Mechanical properties of ceramics’, which is 

constituted from 25 chapters. They explained in detail the mechanical behaviors of ceramic materials under stress and high temperatures. 

Shein et al. [20] have investigated the elastic constants Cijand several other related properties of cubic binary phases of thorium based 

nonmetals, i.eThX (X = C, N, O, P, As, Sb, S, Se) using first-principles calculation with the full-potential linearized augmented plane 

wave (FLAPW) approach and the generalized gradient approximation (GGA) for the exchange-correlation potential. They found that the 

aggregate bulk modulus B of the polycrystalline ceramics decreases with increasing inter-atomic distances in the following sequences: 

ThN → ThP → ThAs and ThO → ThS → ThSe, respectively. 

Using first principles calculations based on density functional theory (DFT), Qi et al. [25] have investigated the crystal structure, elec-

tronic and elastic properties, and mechanical anisotropy of XB2 (X = V, Nb, Ta, Cr, Mo, and W) binary compounds. They found that the 

bonding behaviors of XB2 (X = V, Nb, Ta, Cr, Mo, and W) are the combination of covalent and metallic bonds. 

Using Niobium-doped lead zirconate-titanate (PNZT), Biswas and Fulrath [29] investigated the effect of porosity on the mechanical 

properties of a polycrystalline ceramic. They found that the Young's modulus showed a linear relationship with increase in porosity.  

In the present work, we investigate the correlation between the bulk modulus, the shear modulus G for some pore-free polycrystalline 

ceramic materials based on some data reported by Wachtman et al. [19]. 
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2. Theory and discussion of the results 

Young's modulus E is a key mechanical property of isotropic brittle materials such as polycrystalline ceramics [18]. Values for Young’s 

modulus E and shear modulus G for some pore-free polycrystalline ceramics are given in Table 1 [19], which are in some cases averages 

of measurements from several authors. The values of the Young’s modulus E and shear modulus G of pore-free polycrystalline ceramics 

summarized in Table 1 are plotted in Figure 1. 

 
Table 1: Values of Young’sand Shear Moduli of Pore-Free Polycrystalline Ceramics [19] 

Material Al2O3 MgO ThO2 TiO2 ZnO 

E (GPa) 402.8  310.9  261.0  284.2  123.5  
G (GPa) 163.0 133.4 100.6 111.5 45.6 

 

The values of the Young’s modulus E and the shear modulus Gare also plotted in Figure 1.From Figure 1, we can observe clearly that the 

shear modulus Gincreases quasi-linearly with increase of the Young’s modulus E. The data plotted in Figure 1 were fitted using the line-

ar model, the obtained linear expression is given as follows: G = 0.43 E - 7.7, where both G and E are expressed in GPa. The linear coef-

ficient of the correlation was found at around 0.994, while the average error on the estimation of the shear modulus G is only around 

2.83%. Using the previous model, the errors on the estimation of the shear modulus G are around 1.54 % for Al2O3, 5.56 % for MgO, 

3.91 % for ThO2, 2.70 % for TiO2 and 0.43 % for ZnO, respectively. So, the maximum error (5.56 %) was found for MgO, while the 

minimum error (0.43 %) was reported for ZnO material. It is very important to that a quasi-linear correlation between Young’s and shear 

moduli was also obtained for several intermetallic compounds: X3Ir (X = Ti, V, Cr, Nb and Mo) [5]. 
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Fig. 1: Quasi-Linear Correlation between Young’s and Shear Moduli in Pore-Free Polycrystalline Ceramics. 

 

In the following section, we use our proposed model to predict the shear modulus G of some other polycrystalline ceramics based on 

their Young’s modulus E values reported in the literature [19], [30], [31]. Using the Cij single crystal of Ref [31] and Voigt–Reuss–Hill 

approximation [32], the obtained values of the shear modulus G for different polycrystalline ceramics are summarized in Table 2. 

 
Table 2: Predicted Values of Shear Modulus for Some Ceramics, *Using Cij Single Crystal of Ref [31] and Voigt–Reuss–Hill Approach [32]. 

Material Dy2O3 Er2O3 Y2O3 ZrO2 BeO CaO 

E (GPa) 170.5 [19] 186.3 [19] 138.3 [19] 230 [19] 379.2 [30] 197.7 [31]* 

G (GPa) 65.6 72.4 51.8 91.2 155.4 77.3 

 

There are different relationships frequently employed to predict the hardness H and the fracture toughness KIC of the materials [33-37]. 

We calculate the Vickers hardness HV of pore-free polycrystalline ceramics according to the following empirical expression: HV = 

0.92(G/B)1.137G0.708 [32], [38], whereG is the shear modulus and B is the bulk modulus. Frequently, the elastic moduli of the polycrystal-

line materials are calculated [39-48]. Iuga et al. [45] have investigated the elastic constants Cij of ceramic crystals using an Ab-initio cal-

culation. For aggregate polycrystalline materials, the bulk modulus B is expressed as a function of the Young’s modulus E and the shear 

modulus G as follows: B = (1/3)EG/(3G-E) [19]. The obtained values of the bulk modulus B for different ceramics are summarized in 

Table 3, along the experimental one (210 GPa) for BeO material [49]. 

 
Table 3: Predicted Values of Bulk Modulus B for Some Polycrystalline Ceramics, afrom Ref [1], bfrom Ref [45], cfrom Ref [49]. 

Material Dy2O3 Er2O3 Y2O3 ZrO2 BeO CaO 

B (GPa) 141.55, 144a 145.39,160a 140.33, 166b 160.37, 170 a 226.06, 210 c 148.95, 112.3b 

 

The Poisson’s ratioυis expressed as a function of E and G as follows: υ = (E/2G) -1[19]. The obtained values of thePoisson’s ratioυ and 

HVfor different ceramics are reported in Table 4. In the case of MgO and Y2O3, we present a comparison of our calculations values with 

theoretical data of Iuga [45] on Poisson’s ratioυ (Table 4). Furthermore, it is very clear that our obtained value (22.8 GPa) of the Vickers 

hardness for Al2O3 ceramic is very higher than the experimental one (13 GPa) reported by Wachtman et al [19]. 

 
Table 4: Predicted Values of Poisson’s RatioΥ and Vickers Hardness HV for Pore-Free Polycrystalline Ceramics, *from Ref [45]. 

Material Al2O3 MgO ThO2 TiO2 ZnO Dy2O3 Er2O3 Y2O3 ZrO2 BeO CaO 

υ 0.22 0.23, 0.18* 0.25 0.24 0.36 0.30 0.29 0.34, 0.31* 0.26 0.22 0.28 
HV(GPa) 22.8 17.2 14.0 15.5 3.6 7.4 8.6 4.8 11.8 21.4 8.8 

 

Our value (11.8 GPa) of HV for ZrO2 material is also higher than the experimental one (9 GPa) reported by Wachtman et al [19]. Our 

obtained value (21.4 GPa) of HV for BeO material is also very higher than the predicted one (9.95 GPa) reported by Yang et al [50]. The 

calculated values of the Poisson’s ratioυ and Vickers hardness HV forceramics are also plotted in Figure 2. We could see clearly that the 
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HV decreases exponentially with increasing Poisson’s ratio υ. Bioud and Benchiheub [51] studied the pressure effect on some physical 

properties of calcium oxide material, and found a correlation between the bulk modulus B and the microhardness H. Zhang et al. [18] 

have mensioned that the Young’s modulus is correlated with most mechanical properties including tensile strength, hardness, bending 

strength, and fracture toughness, while Mezouar and Logzit [52] have studiedthe microhardness of BxAl1-xSb alloys using semi-empirical 

approach. It is well know that the Diamond is the hardest material on earth having HV in the range of 70 –150 GPa [53]. The values of 

HV for ceramics are very smaller than that of the diamond, and higher than that (3.57 GPa) of GaSb [54]. 
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Fig. 2: Exponential Correlation between Poisson’s Ratio υ and Vickers Hardness HV in Pore-Free Polycrystalline Ceramics. 

3. Conclusion 

Based on some data reported previously in the literature, we have investigated the correlation between the shear modulus G andthe 

Young’s modulus E for some pore-free polycrystalline ceramics. Our investigation shows that the shear modulus correlates quasi-linearly 

with the Young’s modulus. The best fit between G andE was obtained using the linear model as follows: G = 0.43E - 7.7 (where both G 

and E are expressed in GPa). The coefficient of the correlation was found at around 0.994, while the average error is only around 2.83%. 

Our expression was used to predict the shear modulus of some other isotropic polycrystalline ceramic materials. The shear modulus of 

Dy2O3, Er2O3, Y2O3 and CaO ceramics are estimated at around 65.6, 72.4, 51.8 and 77.3 GPa, respectively. We calculated also the Vick-

ers hardness (HV) of some polycrystalline ceramics; our obtained values are very larger than other experimental data of the literature. The 

calculated Vickers hardness HV of polycrystalline ceramics decreases exponentially with increasing Poisson’s ratio υ. 
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