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Abstract 
 

This work investigates the impact of electron mobility variations on short channel effects (SCEs) in different semiconductor materials 

using FinFETs. Using PADRE simulator, the work examines Gallium Arsenide (GaAs), Gallium Antimonide (GaSb), Gallium Nitride 

(GaN), and Silicon (Si) FinFETs, analyzing performance metrics such as Drain Induced Barrier Lowering (DIBL), Subthreshold Swing 

(SS) and Threshold Voltage roll-off. The result shows that GaN-FinFET exhibits lowest subthreshold swing of 63 mV/dec at electron 

mobility of 10000 cm2/Vs, and threshold voltage of 0.44V at electron mobility of 10000 cm2/Vs, while Si-FinFET exhibits lowest DIBL 

of 3 mV/V at (4000-10000) cm2/Vs. This finding contributes to advancing the understanding of short channel effects in nanoscale Fin-

FETs and provides valuable insights for optimizing device performance in future semiconductor technologies. 
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1. Introduction 

The quest for smaller transistors centers on nanoscale technology, which drives major breakthroughs in semiconductors [1-7], by ena-

bling hundreds of circuits on a chip through Very Large Scale and Ultra-Large Scale Integrations. However, reducing device dimensions 

generate short channel effects, (SCEs) [8-14] in single gate MOSFETs, which negatively influence current and cause off-state leakage. 

To address these challenges, FinFETs stand out as prospective electronic devices [15-30] due to their improved scalability and ability to 

control SCEs. The functionality of nanoscale FinFETs is now transitioning into a region where quantum mechanical effects such as quan-

tum confinement effects are becoming discernible [31-32]. This confinement alters the energy band structure of the material, leading to 

discrete energy levels and affecting electron mobility. In the pursuit of further miniaturization and performance enhancement, it becomes 

imperative to delve into the intricate interplay between device dimensions, material properties, SCEs and electron mobility within Fin-

FET structures. Electron mobility, a fundamental parameter governing the speed of charge carriers in a material under the influence of an 

electric field, is central to understanding the operational characteristics of FinFETs. 

Numerous studies exploring the impact of Short-Channel Effects (SCEs) on the performance of FinFETs have been reported in the aca-

demic literature [33-40]. To the best of authors’ knowledge, no study has been reported on the effect of electron mobility on short chan-

nel effects. 

This work aims at comprehensively looking into the impact of electron mobility variations on short channel effects in nanoscale double 

gate FinFET devices using Si, GaSb, GaN and GaAs as channel materials. The focused on significant performance metrics: DIBL, SS, 

and threshold voltage roll-off, crucial in the determination of device performance. Simulations will be conducted using the PADRE Sim-

ulator, known for semiconductor device modeling. Understanding how electron mobility variations impact SCEs enables the develop-

ment of strategies to optimize the performance of nanoscale FinFETs. 

1.1. Device structure 

The device structure of an n-channel double gate FinFET is shown in Fig. 1. The structure has important parts such the source, drain, 

gate length (channel length), and channel width (fin width or fin thickness). Before making the gate contact, the oxide is placed on the 

top surface of the fin, both on the side walls, and both sides of the side walls. Tox1 and Tox2 are the oxide thicknesses of the side wall. 
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Fig. 1: Two-Dimensional Double Gate FinFET. 

2. Materials and method 

This section describes the materials and the method  used during the device simulation. 

2.1. Materials 

The materials used in this research are Si, GaAs, GaSb and GaN as fin (channel) materials, silicon dioxide (SiO2) as the gate dielectric, 

Silicon as base substrate and MuGFET simulation tool. 

2.2. Method 

The device simulation was performed in the PADRE simulator from the MuGFET tool. The impact of electron mobility on SCEs was 

investigated in FinFETs using different semiconductor materials. Specifically, the study examined GaAs, GaSb, GaN, and Si FinFETs 

and analyzed key performance metrics including DIBL, SS and threshold voltage roll-off. The oxide thickness used was 2 nm, the chan-

nel width was 10 nm, the gate length was 45 nm and the electron mobility was varied from (1000-10,000) cm2/Vs. During the simulation, 

the drain/source doping was set at  cm-3 and the channel doping concentration was maintained at  cm-3. While the gate 

bias was varied between 0 V and 1 V, and the drain bias was set between 0.05 V and 1 V. The parameters are listed in Table 1. 

 
Table 1: Parameter Specifications Used in This Simulation 

Parameter Value 

Gate Length 45 nm 
Electron Mobility (1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000) cm2/Vs 

Channel Width 10 nm 

Channel Doping Concentration  cm-3 

Source/Drain Doping Concentration  cm-3 

Drain Bias 0.05 V, 1.0 V 

Gate Bias 0 V to 1.0 V 

3. Results and discussion 

Presented and discussed here are the results for the impact of electron mobility variation on SCEs in nanoscale double FinFETs. 

3.1. Impact of electron mobility variations on DIBL 

The DIBL is defined as the difference in threshold voltage caused by increasing the drain voltage from 0.01 V to 0.05 V [41].  DIBL 

value can be determined using the formula stated in [42]: 

 

                                                                                                                                                                                       (1) 

 

Where  denotes the threshold voltage and  denotes the drain-source voltage. 

The impact of electron mobility variations on DIBL in nanoscale DG-FinFETs using GaAs, GaSb, GaN, and Si as channel materials is 

visualized in Figure 2. Generally, the figure demonstrates that DIBL increases with higher electron mobility in all four FinFETs. The 

figure shows that DIBL decreases as electron mobility increases in GaSb and GaAs FinFETs from 1000 cm2/Vs to 2000 cm2/Vs, thereaf-

ter it remains constant up to 10000 cm2/Vs. This suggests minimal impact of electron mobility on DIBL within this range. This could be 

due to material properties. In GaN-FinFET, DIBL increases as electron mobility is increased from 1000 cm2/Vs to 3000 cm2/Vs after 

which it stabilizes between 3000 cm2/Vs and 10000 cm2/Vs, indicating a limited effect on DIBL. Conversely, in Si-FinFET, DIBL rises 

as electron mobility rises from 1000 cm2/Vs to 3000 cm2/Vs, drops significantly at 4000 cm2/Vs, and remains steady up to 10000 

cm2/Vs. Si-FinFET performs better than the other FinFETs as it has the lowest DIBL value of 3 mV/V from 4000 cm2/Vs to 10000 

cm2/Vs, while GaSb-FinFET displays the highest DIBL at an electron mobility of 1000 cm2/Vs. Lowest DIBL value in FinFETs leads to 

superior device performance, energy efficiency, signal integrity, design flexibility, and reliability, making them highly desirable for a 

wide range of applications in the semiconductor industry. 
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Fig. 2: DIBL vs Electron Mobility. 

3.2. Impact of electron mobility variations on subthreshold swing 

The subthreshold swing is the most important factor in determining leakage current. Furthermore, SS is computed using the formula [43]: 

 

                                                                                                                                                                        (2) 

 

Where  denotes gate-source voltage and  denotes drain-source current. 

The impact of electron mobility variations on subthreshold swing in nanoscale DG-FinFETs using GaAs, GaSb, GaN and Si as channel 

materials is illustrated in Figure 3. It can be observed from the figure that subthreshold swing decreases as the electron moblity increases 

in all the four FinFETs. The decrease in subthreshold swing with incraease in electron mobility can be explained by the improved control 

over the channel potential by the gate voltage due to higher mobility electrons. This allows for more efficeient modulation of the channel 

current, leading to a lower subthreshold swing. However, there is drastic incraese in the subthreshold swing as the electron mobility 

incraeses from 1000 cm2/Vs to 2000 cm2/Vs in GaAs-FinFETs which suggests higher leakage current between these electron mobilities. 

In comparison with the other FinFETs, GaN-FinFET stands out to be the best as it exhibited the lowest subthreshold swing value of 63 

mV/dec at 10000 cm2/Vs, while GaSb-FinFET is the worst in terms of SS characteristics. A lower SS enables faster switching between 

the on and off states of the transistor, enhancing overall device performance and responsiveness. This is advantageous in high-speed ap-

plications such as data processing and communication. 
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Fig. 3: Subthreshold Swing vs Electron Mobility. 

3.3. Impact of electron mobility variations on threshold voltage 

The threshold voltage is the gate voltage at which a transistor just begins to conduct [14]. The threshold voltage expression for a multi-

gate field effect transistor (MuGFET) may be stated as [12]: 

 

                                                                                                                                                             (3) 

 

Where  denotes gate dielectric charge,   is the capacitance in the gate,  is the depletion charge in the channel,  denotes metal 

semiconductor work function difference between gate electrode and the semiconductor,  is the fermi potential, and Vin is the additional 

surface potential to  that is required for ultrathin body devices to cause enough inversion charges in to the channel region of the tran-

sistor to reach threshold point. 

The impact of electron mobility variations on threshold voltage in nanoscale DG-FinFETs using GaAs, GaSb, GaN and Si as channel 

materials is shown in Figure 3. It can be observed from the figure that threshold voltage decreases as the electron moblity increases in all 

the four FinFETs. When the threshold voltage decreases with increasing electron mobility, it suggests that the transistor can turn on more 

easily due to the improved mobility of electrons. Higher electron mobility allows for better control over the channel potential by the gate 

voltage, leading to a lower threshold voltage. GaN-FinFET outperforms other FinFETs in terms of threshold voltage with the lowest 

threshold voltage of 0.44V, at the electron mobility of 10000 cm2/Vs while Si-FinFET is the worst in terms of threshold voltage. Lower 

threshold voltage in FinFET operation is essential for reducing power consumption, improving performance, enabling further scaling, 

facilitating operation at lower voltages, and ensuring compatibility with modern low-voltage systems. 
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Fig. 4: Threshold Voltage vs Electron Mobility. 

4. Conclusion 

This work investigated the impact of electron mobility on the short channel effects in nanoscale DG-FinFET, using various semiconduc-

tor materials, namely GaAs, GaSb, GaN and Si. The study analyzed key performance metrics, including DIBL, SS and threshold voltage 

roll-off. The result showed that GaN-FinFET exhibited superior characteristics in terms of subthreshold swing and threshold voltage at 

higher electron mobility while Si-FinFET excelled in terms of drain induced barrier lowering. It can be concluded that higher electron 

mobility in materials plays significant role in mitigating short channel effects in FinFET devices. This finding contributes to advancing 

the understanding of short channel effects in nanoscale FinFETs and provides valuable insights for optimizing device performance in 

future semiconductor technologies. Further research can be carried out by exploring the integration of nanoscale FinFETs with emerging 

technologies, such as neuromorphic computing, photonic integration, or quantum computing. 
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