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Abstract 
 

In this paper, we consider nonlinear wave equation in finite deformation elastic cylindrical rod and obtain soliton solutions by Solitary 

Wave Ansatz method. It is shown that the ansatz method provides a very effective and powerful mathematical tool for obtaining solu-

tions for Nonlinear Evolution Equations (NLEEs) in nonlinear Science. 
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1. Introduction 

In the recent a few decades, solid mechanics had been taking more 

and more account of nonlinear effects and had acquired consider-

able development in the studies of Solitons. Many researchers had 

given attention on the propagation of longitudinal waves in a non-

linear elastic cylindrical rod. [1- 3]. When a compression wave 

propagates longitudinally along a rod, the Poisson effect causes a 

lateral motion simultaneously. Such a lateral motion produces 

contribution to the kinetic energy of the system and also to the 

strain energy as well. Many methods have been proposed so far 

for obtaining solutions of Nonlinear Evolution Equations 

(NLEEs). In this paper, longitudinal oscillations of a nonlinear 

elastic cylindrical rod are studied. The nonlinear longitudinal 

wave equation of the elastic rod derived by Liu and Zhang [5, 6]] 

is solved by the Solitary Wave Ansatz Method [4]. 

The nonlinear wave equation in a finite deformation elastic cylin-

drical rod reads 
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where u(x,t) is an unknown displacement, c0 =  √E ρ⁄  is the speed 

of the longitudinal wave in the rod, cs =  √μ ρ⁄  is the speed of the 

shear wave in an unbounded medium, E is the Young’s modulus, 

ρ is the density, μ is the shear modulus, σ is the Poisson ratio and 

R is the radius of the rod. It is known that when the longitudinal 

wave propagates, the lateral shear wave caused by transverse Pois-

son effect also propagates. 

Differentiating both sides of eqn. (1) with respect to x and putting 

ψ =  
∂u

∂x
 , we write, 
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2. Reduced Nonlinear Ordinary Differential Equation (RNLODE): 

Let ψ(x,t) be a one-dimensional travelling wave solution for a 

nonlinear partial differential equation (NLPDE) of the form 

 

P(ψ,  ψx,  ψt,  ψxx,  ψtt,  ψxxt,  ψxtt  … )  =  0 .                              (3) 

 

where 

 

ψx  =  
∂ψ
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 , etc.  

 

Let us introduce a new dimensionless variable 

 

 ξ = kx −  ωt +  φ ,                                                                       (4) 

 

where k is the wave number, ω is the circular frequency and φ is 

the phase constant of the travelling wave. Then, we have, 

 

ψ (x, t) =  ψ (ξ).                                                                            (5) 
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Using eqns. (5) and (6), eqn. (3) reduces to a RNLODE of the 

form 

 

Q(ψ,  ψ′, ψ′′ ,  ψ′′′, . . . ) = 0,                                                          (7) 

 

where 
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ψ′ =  
dψ

dξ
 , ψ′′ =  
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 , etc.  

 

Solving RNLODE (7), we can obtain the solution of NLEE (3) as 

well. 

For the present problem, using eqns. (5) and (6), eqn. (2) reduces 

to a nonlinear ordinary differential equation 

 

(ω2  −  c0
2k2)

d2ψ 

dξ2
  

 

=  k2 d2

dξ2
[

3

2
c0

2ψ2  +  
c0

2

2
ψ3

+ 
σ2R2

2
(ω2  −  cs

2k2)
d2ψ

dξ2

]                                           (8) 

 

Integrating eqn. (8) with respect to ξ twice and choosing the inte-

gration constants as zero, we have, 
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Dividing both sides of the above eqn. by 

(ω2  −  cs
2k2)
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2
 , we obtain, 
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where use has been made of 
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2. Application of solitary wave ansatz method 

In this section, the solitary wave ansatz method is used to obtain 

the soliton solution of the nonlinear wave equation in finite de-

formation elastic rod. 

Let us assume the following form of ansatz solution  

 

ψ(ξ) =  A +  B sechp(μξ) , p > 0,                                             (11) 

 

where ξ =  kx −  ωt +  φ; A, B are constants, μ  is the inverse 

width of the soliton and φ is a phase constant. The index p is to be 

calculated latter. 

We have,  

 
d2ψ

dξ2 = p2μ2B sechp μξ  

 

−p(p + 1 )μ2B sechp +2 μξ .                                                       (12) 

 

Substituting eqns. (11) and (12) into eqn. (9), we obtain, 
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Equating the exponents p + 2 and 3p in eqn (13), we obtain 

p =  1.                                                                                         (14) 

 

Equating the co-efficients of the linearly independent functions 

sechmp μξ ( m = 0, 1, 2, 3 )  successively to zero and using eqn 

(14), we obtain, 
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Using eqns. (10) and (15), we obtain, 

 

A =  − 
β2

3β3
=  − 1 ,                                                                   (16a) 

 

μ =  √
(2ω2 + c0

2k2)

(ω2 − cs
2k2)σ2R2k2 ,                                                           (16b) 

 
[considering only the positive value),   
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Now, the solution of eqn. (9) is obtained as 
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which is valid for ω > cs . 

 

Since ψ =  
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 , we obtain, 
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Thus, eqn (18) is the required solution of the problem. 

3. Conclusion 

In this paper, the nonlinear wave equation in finite deformation 

elastic rod has been solved by the solitary wave ansatz method. It 

is seen that the ansatz method is an efficient method for obtaining 

soliton solutions of many nonlinear evolution equations and the 

results of these will be useful in conducting research in future. 
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