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Abstract

A class of inhomogeneous Lemaı̂tre-Tolman cosmological models is obtained in the context of Lyra’s geometry. Cosmological models in
Lyra’s geometry are studied under the condition of the minimal coupling of matter with the displacement vector field and the varying Λ term.
Exact solutions to the model equations are obtained subject to the quasi-vacuum effective equation of state. As a result, the displacement
field as well as the cosmological term can be expressed in terms of the energy density of matter. The rate of expansion and the deceleration
parameter of the model are also studied.
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1. Introduction

Recent observations like type Ia Supernovae [1, 2], the cosmic mi-
crowave background radiation [3], and the large-scale structure [4]
strongly indicate that our universe is spatially flat and currently
undergoing an accelerating expansion. This acceleration could be
realized with negative pressure and positive energy density of some
exotic matter commonly called ”dark energy” (DE). Due to the DE
repulsive effect, the universe has experienced the transition from the
earlier deceleration phase to the recent acceleration phase at some
instant in the past [5]. Unfortunately, the source of accelerated ex-
pansion is still unknown. In physical cosmology and astronomy, the
simplest candidate for the dark energy is the cosmological constant
Λ , but it needs to be extremely fine-tuned to satisfy the current value
of the DE density. Alternatively, to explain the decay of this density,
the different forms of dynamically changing DE with an effective
equation of state (EoS) we f f = pe f f /ρe f f < −1/3 were proposed
instead of the constant vacuum energy density wvac =−1.
Another approach to the explanation of accelerated expansion con-
sists of different modifications of the gravitational theory itself. Sev-
eral theories are proposed as alternatives to Einstein’s theory to
reveal the nature of the universe in the early stage of evolution. The
most attractive among them were scalar-tensor theories proposed by
Brans and Dicke [6], Lyra [7], Nordtvedt [8], Saez and Ballester [9],
Barber [10] and some others.
G. Lyra [7] suggested a modification of Riemannian geometry by
introducing a gauge function into the structureless manifold, as a
result of which the cosmological constant arises naturally from the
geometry. Sen and Dunn [11] have proposed a new scalar tensor
theory of gravitation and constructed an analogue of the Einstein
field equation based on Lyra’s geometry. According to Halford
[12] the scalar-tensor treatment based on Lyra’s geometry predicts
the same effects within observational limits as in Einstein’s theory.

Soleng [13] has pointed out that the constant displacement field in
Lyra’s geometry will either include a creation field and be equal to
Hoyle’s creation field cosmology or contain a special vacuum field,
which together with the gauge vector form may be considered as a
cosmological term. Subsequent investigations were done by several
authors in cosmology within the frame work of Lyra’s geometry (see,
e.g., some latest papers [14]-[22]).
Inhomogeneous cosmological models are those exact solutions of
Einstein’s equations that contain at least a subclass of non-vacuum,
non-static Friedmann-Robertson-Walker (FRW) solutions as a limit.
Inhomogeneous models of the universe arise from perturbations of
the FRW metric. The Lemaı̂tre-Tolman (LT) models are one of
the oldest solutions in general relativity that describe spherically
symmetric inhomogeneous non-dissipative fluid. The cosmological
models describing a spherically symmetric inhomogeneous universe
in General Relativity filled with dust matter without pressure, possi-
bly including the cosmological constant, were originally discussed
by Lemaı̂tre [23] and Tolman [24] and have been widely studied.
Apart from the study of gravitational collapse, these models have
also been used in the study of quantum gravity, cosmology and
also the inhomogeneities in the universe which may account for the
present accelerated expansion of the universe.
Recently the LT model has been used to explain the cosmological
data: it represents an alternative to the introduction of the notion of
dark energy in the standard cosmological model. For a comprehen-
sive exposition of the LT models and subsequent developments one
can refer to [25, 26]. As noted in [27], instead of invoking exotic
energy sources, it could be suggested that the cosmic acceleration
might originate from the inhomogeneities of the universe. The pos-
sible change of the deceleration parameter in an inhomogeneous
universe has been studied in [28].
At the same time, the observational data and our knowledge presume
the paradigm of cosmological inflation regarding the very early
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universe. Along with all kinds of inhomogeneous and anisotropic
scenarios of inflation, the author of this work investigated earlier
the possibility of cosmological inflation within the framework of LT
model in [29].
Thus, it would be worthwhile to explore the LT models in the context
of modified theories of gravity. In this paper, we consider minimally
interacting perfect fluid and displacement field with a varying cos-
mological term within the framework of a LT space-time in Lyra’s
geometry. Some exact solutions to the model equations are obtained
subject to the quasi-vacuum effective equation of state. We show that
the displacement field the varying cosmological term in our model
can be expressed in terms of the energy density of matter. We also
consider the rate of expansion and the deceleration parameter of the
model.

2. Lyra’s geometry in brief

Let us briefly recall the main ideas of Lyra’s geometry [7]. It is useful
to mention that Lyra’s geometry can be considered as a generalization
of Riemannian geometry by introducing a gauge function which
removes the non-integrability of the length of the parallel transfer
characteristic of Weyl’s theory. In Lyra’s geometry, the displacement
vector between two neighboring points xi and xi +dxi is determined
by the components Ψdxi, where Ψ = Ψ(xk) is a gauge function. A
reference frame (Ψ,xi) consists of the coordinate system xi and the
gauge function Ψ. Therefore, the transition to the new reference
frame (Ψ′,x′i) is given by

Ψ
′ = Ψ(Ψ,xk), x′i = xi(xk), (1)

where ∂Ψ′/∂Ψ 6= 0, det|∂x′i/∂xk| 6= 0. The Levi-Civita connection
coefficients in Lyra geometry are defined as follows:

∗Γi
jk = Ψ

−1
Γ

i
jk−

1
2
(δ i

jφk +δ
i
kφ j−g jkφ

i), (2)

where Γi
jk is defined in terms of the metric tensor gik just like as

in Riemannian geometry, and φk is the displacement vector field.
Lyra [7] and Sen and Dunn [11] have showed that any general frame
of reference vector field φk arises as a natural consequence of the
introduction of the gauge function Ψ in the structureless manifold.
The metric on the Lyra manifold is determined by the interval

ds2 = Ψ
2gikdxidxk, (3)

which is invariant with respect to the coordinate and gauge transfor-
mations.
As a result, the parallel transport of a vector ξ i is given by

dξ
i =−Γ̃

i
jkξ

j
Ψdxk, (4)

where

Γ̃
i
jk = ∗Γ

i
jk−

1
2

δ
i
jφk. (5)

Thus, we see that Γ̃i
jk is not symmetric with respect to j and k. A re-

markable difference from the Weyl geometry is that in Lyra geometry
length of the vector does not change under parallel transport.
As always, the curvature tensor is defined in terms of the parallel
transport of a vector along a closed curve, and is equal to

∗Ri
. jkl = Ψ

−2[−(ΨΓ̃
i
jk),l +(ΨΓ̃

i
jl),k−Ψ

2(Γ̃m
jkΓ̃
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ml − Γ̃
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i
km)], (6)

where Γ̃i
jk is determined from (5). The convolution of the curvature

tensor (6) yields the scalar curvature

∗R = Ψ
−2R+3Ψ

−1
φ

i
;i +

3
2

φ
i
φi +2Ψ

−1(lnΨ
2),iφ

i, (7)

where R is the Riemannian scalar of curvature, and the semicolon
denotes the covariant derivative with the Christoffel symbols of the
second kind.

The action integral is invariant under the gauge and coordinate trans-
formations , and is given in the form

S =
∫

L
√
−gΨ

4d4x, (8)

where d4x is a volume element, and L is a scalar function.
Using the normal gauge Ψ = 1 [11], and putting L = ∗R in equation
(8), it is easy to find that equation (7) can be reduced to the following
form

∗R = R+3φ
i
;i +

3
2

φ
i
φi. (9)

The field equation is obtained from the variational principle

δ (S+Sm) = 0, (10)

where S is defined by (8), and the action Sm is defined by the La-
grangian density of matter Lm as usual:

Sm =
∫

Lm
√
−gd4x. (11)

3. The model equations

The Einstein’s field equations in Lyra’s geometry, proposed in [11]
in normal gauge, can be written with a variable Λ - term as

Rik−
1
2

gikR−Λgik +
3
2

φiφk−
3
4

gikφ
j
φ j = Tik, (12)

where φi is a displacement vector. For simplicity, we assume that the
gravitational constant 8πG = 1. All other symbols have their usual
meanings in the Riemannian geometry.
The energy-momentum tensor (EMT) of matter T (m)

ik can be derived
in a usual manner from the Lagrangian of matter (11). Considering
the matter as a perfect fluid, we have

T (m)
ik = (ρm + pm)uiuk− pm gik, (13)

where ui = (1,0,0,0) is 4-velocity of the co-moving observer, sat-
isfying uiui = 1, ρm and pm are the energy density and pressure of
matter, consequently.
In cosmological studies on the Lyra manifold, the contribution of the
displacement field in Einstein’s equation (12) is often represented by
the energy-momentum tensor

T (φ)
ik =−3

2
φiφk +

3
4

gikφ
j
φ j, (14)

despite of its purely geometric nature. At the same time, the energy-
momentum tensor of a cosmological term can be represented by

T (Λ)
ik = Λgik. (15)

As a result, we can represent the Einstein equation (12) in the fol-
lowing simple form

Gik = T̃ik ≡ T (m)
ik +T (φ)

ik +T (Λ)
ik (16)

by introducing the effective EMT T̃ik, and the Einstein tensor Gik =
Rik− (1/2)gikR.
Let φi be a time-like vector field of displacement,

φi =

[
2√
3

β (r, t),0,0,0
]
, (17)

where the numerical factor 2/
√

3 is substituted for the sake of con-
venience in what follows.
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Let us assume that dynamics of a spherically symmetric universe is
described by the LT solution to Einstein’s field equations described
by the well-known LT metrics [23, 24]

ds2 = dt2− (R′)2

f 2 dr2−R2(d2
θ + sin2

θd2
ϕ), (18)

where R = R(r, t) > 0 is a function to be determined. In the case
R(r, t) = a(t)g(r), f (r) = g′(r),g(r) = {sin(r),r,sinh(r)}, the LT
metrics is identical to a homogeneous FRW metric. Otherwise, the
LT metrics corresponds to the inhomogeneous cosmological model,
but still remains isotropic around one observer. Hereafter, the prime
denotes a derivative with respect to r, while the over-dot stands for
the time derivative.
For the LT space-time interval (15), the Einstein equation (16) can
be written down in the following form

F ′

2R′R2 = T̃ 0
0 ,

Ḟ
2ṘR2 = T̃ 1

1 ,
1

4R′R

(
Ḟ
Ṙ

)′
= T̃ 2

2 = T̃ 3
3 , (19)

where the so-called ”mass function” is given by

F(r, t) = 2RṘ2 +2R(1− f 2) (20)

Combining Einstein’s equations in (15), one can derive the following
equations of the energy-momentum conservation law

T̃ 2
2 = T̃ 1

1 +
R

2R′

(
T̃ 1

1

)′
, (21)

R2
[

˙(T̃ 0
0 )R

′− (T̃ 1
1 )
′Ṙ
]
+(T̃ 0

0 − T̃ 1
1 )

∂ (R2R′)
∂ t

= 0, (22)

which also could be obtained from the conservation law, T̃ j
i ;l = 0,

for the effective EMT in the LT metrics (15).

4. Exact solutions to the field equations

From equations (13)-(17), the following expressions for the non-zero
components of effective EMT can be obtained

T̃ 0
0 = ρe f f (r, t) = ρm +β

2 +Λ,

T̃ 1
1 = T̃ 2

2 = T̃ 3
3 =−pe f f (r, t) =−pm−β

2 +Λ. (23)

Applying these equations to the conservation law (21), (22), we get
(pe f f )

′ = 0, i.e. pe f f = pe f f (t), and

∂ρe f f

∂ t
+(ρe f f + pe f f )

∂ ln(R2R′)
∂ t

= 0. (24)

Suppose further that the effective energy density and pressure satisfy
the effective EoS of the following form

pe f f = we f f ρe f f , (25)

where the effective barotropic index we f f is in general a function of
r and t. However, let us consider the case of quasi-vacuum effective
EoS, i.e. we f f = −1. Substituting pe f f = −ρe f f in equation (24),
one get ρ̇e f f = 0, or ρe f f = ρe f f (r). It is obvious now that the
equality in (25) for we f f =−1 is possible only if both sides of this
equation are constant. Let us denote this constant Λ0. Therefore, we
have

ρe f f =−pe f f = Λ0. (26)

Taking into account (19), (20), (23) and (26), one can obtain the
partial derivatives equation of the first order for R(r, t) as follows

R
(

∂R
∂ t

)2
+R(1− f 2) =

Λ0

3
(R3 +δR3

0), (27)

where R0 is a constant of integration, and δ = 0,±1. This equation
can be readily integrated (see, e.g., [26, 29] and references therein).
In the case of the parabolic model, i.e. under the condition f 2 = 1,
the result of solving equation (28) can be represented as follows

Rp
δ
(r, t) =



R0 sinh2/3
[

3
2

√
Λ0
3 (t + t0(r))

]
, δ =+1,

R0 r exp
(√

Λ0
3 t
)
, δ = 0,

R0 cosh2/3
[

3
2

√
Λ0
3 (t + t0(r))

]
, δ =−1

(28)

where R0 is a constant, and t0(r) is an arbitrary differentiable func-
tion specifying the instant of the Big Bang, which is seen to be
position-dependent. As one can see, an appropriate rescaling has
been chosen in the case of δ = 0 to satisfy the gauge R(0,r) = R0r
[30].
For the hyperbolic, f 2 > 1, and the elliptical, f 2 < 1, models, it is
easy to find solutions for equation (26) with δ = 0 in the following
form

Rh,e
0 (r, t) =


√

3( f 2−1)
Λ0

sinh
[√

Λ0
3 (t + t0(r))

]
; f 2 > 1,

√
3(1− f 2)

Λ0
cosh

[√
Λ0
3 (t + t0(r))

]
; f 2 < 1.

(29)

In the case δ 6= 0, equation (27) for Rh,e
δ

(r, t) can be solved in terms
of the Weierstrass elliptic function [23].
From equations (23) and (26), it follows that

ρm +β
2 +Λ = Λ0 , pm +β

2−Λ =−Λ0. (30)

It is interesting to note that all dynamical parameters in these equa-
tions can arbitrarily depend on t and r, as there are no other re-
strictions on them. Indeed, the main equations such as Einstein’s
equation (19) and the continuity equations (21), (22) are already
satisfied by (26). Assuming the matter energy density and pressure
satisfy the barotropic EoS pm = wmρm in (30), we are able to express
the displacement field and the cosmological term by means of the
matter density as follows

β
2 =−1

2
(1+wm)ρm , Λ = Λ0−

1
2
(1−wm)ρm . (31)

Hence it is clear that the matter density in this model should be
represented by a phantom matter in its nature (that is wm < −1),
as the displacement field is a real function (β 2 > 0). Thus, we can
hitherto observe considerable arbitrariness in the behavior of matter.
The requirement of a minimum matter coupling to the displacement
vector and the cosmological term can significantly limit this arbitrari-
ness. This means that equation (25) breaks up into two independent
equations

∂ρm

∂ t
+(1+wm)ρm

∂ ln(R2R′)
∂ t

= 0, (32)

and

∂β 2

∂ t
+2β

2 ∂ ln(R2R′)
∂ t

=−∂Λ

∂ t
.

despite that equations (30) are valid so far. Therefore, we could solve
equation (32), and then substitute ρm obtained into (31). Equation
(32) is readily integrated for a constant EoS of matter, wm = constant,
that yields

ρm(r, t) = µ(r)(R2R′)−(1+wm), (33)

where µ(r) is an arbitrary differentiable function, which defines
along with t0(r) the mass density distribution at some instant.
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Figure 1: The Hubble parameter H p
δ

versus time t according to (36) with
δ = 0 (red line), and δ =±1 for t0 = 0.1 (black line) and t0 = 0.2 (blue line).

Let us consider some properties of our model. As it emphasized
in [30], for inhomogeneous model the directional preference need
to be specified in the expression for expansion. With the help of a
projection tensor, one can define the invariant expansion rates in two
perpendicular directions as

Hr =
Ṙ′

R′
, H⊥ =

Ṙ
R
, (34)

so that the average expansion rate is given by

H =
2
3

H⊥+
1
3

Hr . (35)

Using, for example, Rp
δ
(r, t) for the parabolic model from equation

(28) in (34) and (35), we can obtain the following expansion rate for
this case

H p
δ
(r, t) =


√

Λ0
3 , δ = 0 ,√

Λ0
3 coth

[
3
√

Λ0
3 (t + t0(r))

]
, δ =±1.

(36)

The behavior of the average Hubble parameter (36) with time for
different values of δ and t0(r) is shown in Fig. 1. To be specific, we
have chosen the units in which

√
Λ0/3 = 1. From these graphs, it is

clear that the expansion rate increases for greater t0(r) i.e., greater
inhomogeneity.
It should be noted that the introduction of the Hubble parameter as
well as the deceleration parameter in the LT model is ambiguous.
Considering the model with zero pressure and zero cosmological
constant, J. Moffat [28] proposed the effective Hubble parameter
H2

e f f = H2
⊥+ 2H⊥Hr, where H⊥ and Hr are determined by (34),

and essentially differs from (35). However, the model-independent
expression for the deceleration parameter q has been derived in [28]
by expanding R(r, t) in a Taylor series

R(r, t) = R(r, tp)
[
1− (tp− t)Hp⊥−

1
2
(tp− t)2q(r, tp)H2

p⊥− ...
]
,

where tp is the present instant, so that the deceleration parameter is
given by

q(r, t) =−
(R

Ṙ

)2 R̈
R
=− 1

H2
⊥

R̈
R
. (37)

Figure 2: The deceleration parameter q versus time t according to (38) with
δ =+1, t0 = 0.1 (blue line), and δ =−1, t0 = 0.35 (red line).

Using the same example of Rp
δ
(r, t) for the parabolic model (28) and

(37), one can readily obtain the following deceleration parameter

qδ (r, t) =



1
2

{
1−3tanh2

[
3
2

√
Λ0
3 (t + t0(r))

]}
, δ =+1,

−1, δ = 0,

1
2

{
1−3coth2

[
3
2

√
Λ0
3 (t + t0(r))

]}
, δ =−1.

(38)

Fig. 2 shows that our model experiences eternal accelerated expan-
sion in the cases δ = 0 and δ =−1, but the model δ =+1 passes
from the deceleration state to the acceleration state at some instant
in the past.

5. Conclusion

In this paper, we have considered the inhomogeneous LT cosmologi-
cal model in the context of Lyra geometry. The solutions of the field
equations have been obtained and discussed in three different types
of spacetime, namely the parabolic, elliptic and hyperbolic models,
under the condition of the quasi-vacuum effective EoS.
The most interesting feature of this model is that the EoS of matter
can be almost arbitrary as well as inhomogeneous, even though the
effective EoS is fixed and equals −1. This has become possible as a
result of fine-tuning the displacement field and cosmological term,
expressed by equation (31). A simple example of solution for the
energy density of matter with constant EoS is given by equation
(33). At that, we have found that the physical matter should satisfy
the phantom EoS that is known to be easily modeled by means of
phantom scalar field. For the parabolic model, we have investigated
some of its kinematic properties and have illustrated their parameters
graphically. Specifically, we have obtained the rate of expansion and
the deceleration parameter for the parabolic model given by (36) and
(38), respectively.
It is obvious that more detailed properties of our model requires a
further study that goes beyond the purpose of the present paper.
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