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Abstract 
 

In this study, we have implemented the modified extended tanh-function method to obtain the exact travelling wave solutions for the 

general (2+1)-dimensional nonlinear evolution equations. By using this method, some travelling wave solutions are successfully obtained 

and which have been expressed by the trigonometric, hyperbolic and rational functions. These obtained solutions are an appropriate and 

desirable for instructive specific nonlinear physical phenomena in genuinely nonlinear dynamical systems. The method is an efficient and 

reliable mathematical tool for solving many nonlinear evolution equations arising in science and engineering problems. 
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1. Introduction 

In recent years, nonlinear partial differential equations (NPDEs) is 

widely used to describe many important phenomena and dynamic 

processes in various fields of science and engineering, especially 

in fluid mechanics, hydrodynamics, mathematical biology, diffu-

sion process, solid state physics, plasma physics, neural physics, 

chemical kinetics and geo-optical fibers. It’s prominent that find-

ing exact solutions of nonlinear evolution equations (NLEEs), by 

using different abundant method plays an important role in the 

proper understanding of mechanisms of the numerous physical 

phenomena in mathematical physics and become one of the fur-

thermost exciting and awfully active areas of research investiga-

tion for mathematicians, physicist, and engineers.  

On the basis of the finding new exact solutions of nonlinear evolu-

tion equations, many researchers [1-34] have devoted significant 

effort to study of exact explicit traveling and solitary wave solu-

tions and several effective techniques have been proposed and 

developed such as the sine-cosine method [1-3], homogeneous 

balance method [4,5], auxiliary equation method [6,7], the tanh-

function method [8], the extended tanh function method [9,10], the 

modified extended tanh-function method [11-13], the modified 

simple equation method [14-18], the  GG / -expansion method 

[19-23], the Exp-function method [24,25], the ))(exp(  expan-

sion method [26-28], the F-expansion method [29-31], ansatz 

method [32-33] , the first integral method [ 34] and so on.  

The extended tanh function method, which was developed by 

Wazwaz [9,10] is a direct and effective algebraic method for han-

dling nonlinear equations and authors [11-12] have been applied 

the modified extended tanh-function method solving nonlinear 

partial differential equations. 

The objective of this study is to apply the modified extended tanh-

function method to find the exact traveling waves solutions of the 

generalized (2+1)-dimensional nonlinear evolution equation [35–

37] in the form, 

 

u au u bu u u 0xt x xy xx y xxxy                                                   (1) 

 

where, a and b are arbitrary constants. 

Recently, some special cases of Eq. (1) have been studied by sev-

eral authors [18, 38-40]. When setting 4a and 2b , Eq. (1) 

becomes the (2+1)-dimensional Calogero–Bogoyavlenskii–Schiff 

(CBS) equation: 

 

024  xxxyyxxxyxxt uuuuuu                                          (2) 

 

When setting 4a and 2b , Eq. (1) becomes the (2+1)-

dimensional breaking soliton equation: 

 

024  xxxyyxxxyxxt uuuuuu                                          (3) 

 

When setting 4a and 4b , Eq. (1) becomes the (2+1)-

dimensional Bogoyavlenskii’s breaking soliton equation: 

 

044  xxxyyxxxyxxt uuuuuu                                          (4) 

 

The rest of this paper is organized as follows: In section 2, the 

modified extended tanh-function method is discussed in details. In 
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section 3, presents the application of this method to construct the 

exact traveling wave solutions of the nonlinear evolution equa-

tions and the section 4, we briefly make a conclusion to the results 

that have been obtained.  

2. Methodology 

In this section, we will describe the algorithm of the modified 

extended tanh-function method for finding traveling wave solu-

tions of nonlinear evolution equations. Let us consider a general 

nonlinear PDE in the form 

 

,........),,,,,,,( xtyyyxxxttt uuuuuuuuP ,                                     (5) 

 

Where, ),,( tyxuu   is an unknown function, P  is a polynomi-

al in u(x, y, t) and its derivative in which highest order derivatives 

and nonlinear terms are involved and the subscripts stand for the 

partial derivatives. The main steps of this method are as follows: 

Step 1: Combine the real variables x , y and t  by a compound 

variable    

 

)(),,( utyxu  , Vtyx                                               (6) 

 

where, V  is the speed of the traveling wave. The traveling wave 

transformation (6), converts Eq. (6) into an ordinary differential 

equation (ODE) for )(uu  : 

 

.)..........,.........,,,( uuuuQ  ,                                                    (7) 

 

Where, Q  is a polynomial of u  and its derivatives and the super-

scripts indicate the ordinary derivatives with respect to  . 

Step 2: Suppose the traveling wave solution of Eq. (7) can be ex-

pressed as follows: 
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Where, the coefficients ),1(, Nnniba ii   are constants to 

be determined and either na  or nb  may be zero but both na  and 

nb  cannot be zero simultaneously. The positive integer n can be 

determined by considering the homogeneous balance between the 

highest order derivatives and nonlinear terms appearing in Eq. (8). 

Moreover, we define the degree of )(u  as nuD ))((  , which 

gives rise to degree of another expression as follows:  
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Therefore, we can find the value of n in Eq. (8), where )(   

satisfies the following Riccati equation:  

 

)()( 2   ,                                                                    (9) 

 

where,  is a constant. Equation (9) admits several types of solu-

tions according to the following: 

 

Type-I (Hyperbolic function solution): If 0 , then  

 

   tanh)(   

 

or, 

 

   coth)(                                                     (10) 

 

Type-II (Trigonometric function solution): If 0  , then  

 

  tan)(   

 

or, 

 

  cot)(                                                               

(11) 

 

Type-III (Rational function solution): If 0 , then  

 




1
)(  ,                                                                               (12) 

 

Step 3: After we determine the index parameter n, we substitute 

Eq.(8) along Eq.(9) into Eq.(7) and collecting all the terms of the 

same power ,....2,1,0, ii  and equating them to zero, we 

obtain a system of algebraic equations, which can be solved by 

Maple or Mathematica to get the values of ia , ib and V . Substitut-

ing the values of ia , ib  and other values into Eq. (8) along with 

general solutions of Eq. (9) completes the determination of the 

solution of Eq. (7). 

3. Application of the method 

In this section, we implement the method described in Section 2 to 

find the exact traveling wave solutions of the (2+1) dimensional 

nonlinear evolution equation, Eq. (1).  

3.1. The general (2+1) dimensional nonlinear evolution 

equation 

We seek the exact traveling wave solution of the Eq. (1) using 

extended tanh-function method. 

The traveling waves transformation  

 

)(),,( utyxu  , Vtyx                                             (13) 

 

Reduces Eq. (1) to the ODE of the form 

 

  ivVu a b u u u 0                                                                  (14) 

 

Integrating once w.r.t.   and setting the constant of integration to 

zero, yields 

 

  0
2

2








 
 uu

ba
uV                                                  (15) 

 

Where, primes denote differentiation with respect to  . By bal-

ancing the highest order derivative term u   with the nonlinear 

term  2u  in (15), gives 1n . Therefore, modified extended 

tanh-function method allows us to use the solution in the follow-

ing form: 

 

)(
)()( 1
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where, 0a , 1a and 1b are constants that need to be determined 

such that 01 a or 01 b . 

Now substituting Eq.(9), Eq.(16) and its derivative into Eq.(15), 

and collecting coefficients of 
i and equating them to zero, we 

obtain a system of algebraic equations for 0a , 1a , b1 and respec-

tively: 
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Solving the obtained system of equations (17a-17e) by using Ma-

ple, the following sets of solutions are obtained: 

 

Case-I: 
ba

aaaV



12

,,4 100 and 01 b  

 

Case-II: 0,,4 100  aaaV  and 
ba

b



12

1  

 

Case-III: 
ba

aaaV



12

,,16 100 and 
ba

b



12

1  

 

Now substituting the values of V , 0a , 1a  and 1b  in the Eq. (16), 

then the general solution of the above cases is as follows: 

 

For case-I: )(
12

)( 0 
ba

au


 ,                                       (18) 

 

where tyx  4  

 

For case-II: 
)()(

12
)( 0
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where tyx  4  

 

For case-III: 
)()(

12
)(

12
)( 0






baba
au





 ,           (20) 

 

where tyx  16  

 

In case-I, we deduce the traveling wave solutions of Eq. (1) with 

the help of Eq. (10-12) and Eq. (18) is as follows. 
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where tyx  4  
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 ,                                                   (23) 

 

where tyx  4  

 

In case-II, we deduce the traveling wave solutions of Eq. (1) with 

the help of Eq. (10-12) and Eq. (19) is as follows. 
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or, 
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 ,                                   (25b) 

 

where tyx  4  

 

010 ),,( atyxu  ,                                                                      (26) 

 

where tyx  4  

 

In case-III, we deduce the traveling wave solutions of Eq. (1) with 

the help of Eq. (10-12) and Eq. (20) is as follows. 
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 ,                                                  (29) 

 

where tyx  16  

3.1.1. (2+1) dimensional Calogero–Bogoyavlenskii–Schiff 

(CBS) equation 

By using the section 3.1, setting 4a and 2b in the above Eqs. 

(21-29), then we explore the fifteen exact solutions of Eq. (2) 

which is indicated the symbol ),,(1 tyxu - ),,(15 tyxu . For spe-

cial values of parameters, the shapes of traveling wave solutions 

are originated from the obtained exact solutions (see Figs. 1–4). 

3.1.2. (2+1)-dimensional breaking soliton equation 

By using the section 3.1, setting 4a and 2b in the above 

Eqs. (21-29), then we explore the fifteen exact solutions of Eq. (3) 

which is indicated the symbol ),,(16 tyxu - ),,(30 tyxu . For 

special values of parameters, the shapes of traveling wave solu-

tions are originated from the obtained exact solutions (see Figs. 5–

8). 

 
Fig. 1: 3D graphics (Kink profile) of ),,(1 tyxu  when 1,10  a

, 0y and 10,10  tx . 

 

 
Fig. 2: 3D graphics (Periodic profile) of ),,(3 tyxu  when

1,10  a , 0y and 10,10  tx . 

 

 
Fig. 3: 3D graphics (Singular cuspon profile) of ),,(5 tyxu  when

0,10  a , 0y and 10,10  tx . 

 

 
Fig. 4: 3D graphics (Periodic profile) of ),,(11 tyxu  when 

1.0,10  a , 0y and 10,10  tx . 
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Fig. 5: 3D graphics (Kink profile) of ),,(16 tyxu  when

1,10  a , 0y and 10,10  tx . 

 

 

 

Fig. 6: 3D graphics (Singular kink profile) of ),,(17 tyxu  when 

1,10  a , 0y and 3,3  tx . 

 

 
Fig. 7: 3D graphics (Singular cuspon profile) of ),,(20 tyxu  when 

0,10  a , 0y and 10,10  tx . 

 

 
Fig. 8: 3D graphics (Periodic profile) of ),,(26 tyxu  when 

1.0,10  a , 0y and 5,5  tx . 

 

 
Fig. 9: 3D graphics (Kink profile ) of ),,(31 tyxu  when

1,10  a , 0y and 10,10  tx . 

 

 
Fig. 10: 3D graphics (Singular kink profile) of ),,(32 tyxu  when 

a 1, 10   , 0y and 3,3  tx . 
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3.1.3. (2 + 1)-dimensional Bogoyavlenskii’s breaking soliton 

equation 

By using the section 3.1, setting 4a and 4b in the above Eqs. 

(21-29), then we explore the fifteen exact solutions of Eq. (4) 

which is indicated the symbol ),,(31 tyxu - ),,(45 tyxu . For 

special values of parameters, the shapes of traveling wave solu-

tions are originated from the obtained exact solutions (see Figs. 8–

12). 

4. Conclusion 

The modified extended tanh-function method has been successful-

ly used to seek exact solutions of the general (2+1)-dimensional 

nonlinear evolution equations such as the (2+1)-dimensional 

Calogero–Bogoyavlenskii–Schiff (CBS) equation, the (2+1)-

dimensional breaking soliton equation and the (2 + 1)-dimensional 

Bogoyavlenskii’s breaking soliton equation. The performance of 

this method is reliable, simple and gives some new exact traveling 

wave solutions as well as solitons, kinks, and periodic solutions. 

We assure that the gained results will be helpful for further studies 

in mathematical physics and engineering. 

 

 
Fig. 11: 3D graphics (Kink profile) of ),,(41 tyxu  when

1,10  a , 0y and 10,10  tx . 

 

 
Fig. 12: 3D graphics (Periodic profile) of ),,(43 tyxu  when 

1,10  a , 0y and 5,5  tx . 
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