Structural and piezoelectric coefficients of AlP under pressure

  • Authors

    • Salah Daoud
    • Rabie Mezouar
    • Abdelfateh Benmakhlouf
    2018-07-28
    https://doi.org/10.14419/ijpr.v6i2.11020
  • Alp Semiconductor, Structural Parameters, Piezoelectric Coefficients, High Pressure.
  • The present work aims to investigate the structural parameters and the piezoelectric coefficients of cubic zinc-blende Aluminum phosphide (AlP) under high pressure up to 21 GPa, using plane wave-pseudopotential (PW-PP) approach in the framework of the density functional theory (DFT) and the density functional perturbation theory (DFPT) with the generalized gradient approximation (GGA) for the exchange-correlation functional. The results obtained are analyzed and compared with other data of the literature. The structural parameters and the piezoelectric coefficients calculated here agree well with other data of the literature. We found also that both the direct and converse piezoelectric coefficients increase with increasing pressure up to 21 GPa.

     

  • References

    1. [1] O. Arbouche, B. Belgoumène, B. Soudini, Y. Azzaz, H. Bendaoud, and K. Amara, " First-principles study on structural properties and phase stability of III-phosphide (BP, GaP, AlP and InP) ", Computational Materials Science, Vol. 47, No. 3, (2010), pp. 685-692. https://doi.org/10.1016/j.commatsci.2009.10.009.

      [2] H. Ma, J. Zhang, B. Zhao, Q. Wei, and Y. Yang, " First-principles study on mechanical and elastic properties of BxAl1-xP alloys ", AIP Advances, Vol. 7, No. 6, (2017), pp. 065007 (12 pages). https://doi.org/10.1063/1.4985254.

      [3] A. Bouhemadou, R. Khenata, M. Kharoubi, T. Seddik, Ali H. Reshak, and Y. Al-Douri, " FP-APW + lo calculations of the elastic properties in zinc-blende III-P compounds under pressure effects ", Computational Materials Science, Vol. 45, No. 2, (2009), pp. 474-479. https://doi.org/10.1016/j.commatsci.2008.11.013.

      [4] P.E.Van Camp and V.E.Van Doren, "High pressure phase transitions in aluminum phosphide", Solid State Communications, Vol. 95, No. 3, (1995), pp. 173-175. https://doi.org/10.1016/0038-1098(95)00246-4.

      [5] S. Daoud, N. Bioud, and N. Lebga, "Structural, elastic, piezoelectric and electronic properties of (B3) AlP compound under pressure", Journal of Optoelectronics and Advanced Materials, Vol. 16, No. (1-2), (2014), pp. 207- 214. https://joam.inoe.ro/index.php?option= magazine &op=view&idu=3416&catid=82.

      [6] S. Daoud, "Mechanical behavior of aluminum phosphide under pressure ", Acta Physica Polonica A, Vol. 133, No. 1, (2018), pp. 23-27. http://przyrbwn.icm.edu.pl/APP/PDF/133/app133z1p06.pdf. https://doi.org/10.12693/APhysPolA.133.23.

      [7] The ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated, and other contributors. http://www.abinit.org.

      [8] E. Engel, and R.M. Dreizler, Density functional theory, Springer-Verlag Berlin Heidelberg, New York, (2011). ISBN 978-3-642-14090-7. https://doi.org/10.1007/978-3-642-14090-7.

      [9] M. Fuchs and M. Scheffler, "Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density- functional theory", Computer Physics Communications, Vol.119, No. 1, (1999), pp. 67-98. https://doi.org/10.1016/S0010-4655(98)00201-X.

      [10] J.P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple", Physical Review Letters, Vol. 77, No. 18, (1996), pp. 3865 - 3868. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.77.3865. https://doi.org/10.1103/PhysRevLett.77.3865.

      [11] H. J. Monkhorst, and J. D. Pack, "Special points for Brillouin-zone integrations", Physical Review B, Vol. 13, No. 12, (1976), pp. 5188 - 5192. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.13.5188. https://doi.org/10.1103/PhysRevB.13.5188.

      [12] A. R. Oganov, J.P. Brodholt, and G.D. Price, Ab initio theory of thermoelasticity and phase transitions in minerals. EMU Notes in Mineralogy Vol. 4, Chapter 5 ('Energy Modeling in Minerals', edited by C.M. Gramaccioli), (2002). pp.83-170.

      [13] S. Daoud, R. Mezouar and A. Benmakhlouf, " Equation of state and some other properties of rock-salt AlN ", International Journal of Physical Research, Vol. 6, No. 1, (2018), pp. 49-52. https://doi.org/10.14419/ijpr.v6i1.10754.

      [14] S. Daoud and N. Bioud, " Structural properties of (B3) TlP under pressure", International Journal of Physical Research, Vol. 2, No. 2, (2014), pp. 50-55. https://doi.org/10.14419/ijpr.v2i2.3100.

      [15] S. Daoud and N. Lebga, " Structural and electronic properties of boron- bismuth compound under pressure ", International Journal of Physical Research, Vol. 4, No. 1, (2016), pp. 1-5. https://doi.org/10.14419/ijpr.v4i1.5753.

      [16] S. Daoud, N. Bioud, and N. Lebga, "Mechanical, piezoelectric and some thermal properties of (B3) BP under pressure", Journal of Central South University, Vol. 21, No. 1, (2014), pp. 58-64. https://doi.org/10.1007/s11771-014-2394-4.

      [17] S. Daoud, "Mechanical and piezoelectric properties, sound velocity and Debye temperature of thallium-phosphide under pressure", International Journal of Advanced Research in Physical Science, Vol. 1, No. 6, (2014), pp. 1-11. www.arcjournals.org/pdfs/ijarps/v1i6/1.pdf.

      [18] S. Adachi, "Properties of group-IV, III-V and II-VI semiconductors", John Wiley & Sons, England, (2005). ISBN 0-470-09032-4.

  • Downloads

  • How to Cite

    Daoud, S., Mezouar, R., & Benmakhlouf, A. (2018). Structural and piezoelectric coefficients of AlP under pressure. International Journal of Physical Research, 6(2), 53-55. https://doi.org/10.14419/ijpr.v6i2.11020