The study of transparent conducting gallium doped ZnO thin films in order to use in solar cells

  • Authors

    • Mojtaba Mahmoudzadeh Pirvahshi Department of Physics, Saravan Branch, Islamic Azad University, Saravan, Iran
    2018-07-28
    https://doi.org/10.14419/ijpr.v6i2.13805
  • Thin Films, Spray Pyrolysis, Structural, Optical, Electrical, Ga Doped ZnO.
  • In this study, transparent conducting Ga-doped ZnO thin films were deposited on glass substrate using chemical spray pyrolysis technique. The effect of Ga-doping concentration (0, 1, 2 and 3 at.%) on microstructural, optical and electrical characteristics of layers have been investigated. The studies of X-ray diffraction and optical transmission spectra show these films have a hexagonal wurtzite structure with (002) preferred growth direction, also a high transmission of 85-95% in visible range. Data analysis show that the band gap energies in these films are varying in the range of 3.27-3.33 eV, consistent with the Burstein-Moss shift effect, with Urbach tail widths between 114-160 meV. The 2 wt% Ga sample showed the maximum figure of merit (3×10-2Ω-1), with an electron concentration and sheet resistance of ~1.42×1019 cm-3 and 13 kΩ/square, respectively.

     

     

  • References

    1. [1] J. Löffler, R. Groenen, J.L. Linden, M.C.M. van de Sanden, R.E.I. Schropp, Amorphous silicon solar cells on natively textured ZnO grown by PECVD, Thin Solid Films 392 (2001) 315–319. https://doi.org/10.1016/S0040-6090(01)01050-1.

      [2] Vanita Devi et al 2014 J. Phys.: Conf. Ser. 534 012047. https://doi.org/10.1088/1742-6596/534/1/012047.

      [3] K. Ellmer, Resistivity of polycrystalline zinc oxide films: current status and physical limit, J. Phys. D: Appl. Phys. 34 (2001) 3097–3108. https://doi.org/10.1088/0022-3727/34/21/301.

      [4] F.Z. Bedia, A. Bedia, N. Maloufi, M. Aillerie, F. Genty, B. Benyoucef, Effect of tin doping on optical properties of nanostructured ZnO thin films grown by spray pyrolysis technique, J. Alloys Compd. 616 (2014) 312–318. https://doi.org/10.1016/j.jallcom.2014.07.086.

      [5] G. Haacke, J. Appl. Phys. 47 (1976) 4086. https://doi.org/10.1063/1.323240.

      [6] H. Gomez, M. de la L. Olvera, Materials Science and Engineering B 134 (2006) 20. https://doi.org/10.1016/j.mseb.2006.07.039.

      [7] Mujdat Caglar, Saliha Ilican, Yasemin Caglar, Thin Solid Films 517 (2009) 5023–5028. https://doi.org/10.1016/j.tsf.2009.03.037.

      [8] D. Dimova-Malinovska_, H. Nichev, O. Angelov, V. Grigorov, M. Kamenova, Superlattices and Microstructures 42 (2007) 123–128. https://doi.org/10.1016/j.spmi.2007.04.025.

      [9] K.L. Chopra, S. Major, D.K. Pandya, Transparent conductors-a status review; Thin Solid Films 102 (1983) 1. https://doi.org/10.1016/0040-6090(83)90256-0.

      [10] S.Y. Kuo, W.C. Chen, F.I. Lai, C.P. Cheng, H.C. Kuo, S.C. Wang, W.F. Hsieh, J. Cryst. Growth 287 (2006) 78. https://doi.org/10.1016/j.jcrysgro.2005.10.047.

      [11] C. Moditswe et al. / Optik 127 (2016) 8317–8325. https://doi.org/10.1016/j.ijleo.2016.06.033.

      [12] K. Matsubara et al. /thin solid Films 431 – 432 (2003) 369-372.

      [13] H. Wei, D. Ding, X. Yan, J. Guo, L. Shao, H. Chen, L. Sun, H.A. Colorado, S. Wei, Z. Guo, Tungsten trioxide/zinc tungstate bilayers: electrochromic behaviors, energy storage and electron transfer, Electrochim. Acta 132 (2014) 58–66. https://doi.org/10.1016/j.electacta.2014.03.056.

      [14] T. Prasada Rao, M.C. Santhoshkumar, - Applied Surface Science 255 (2009) 4579–4584. https://doi.org/10.1016/j.apsusc.2008.11.079.

      [15] E. Burstein, Anomalous optical absorption limit in InSb, Phys. Rev. 93 (1954) 632 https://doi.org/10.1103/PhysRev.93.632.

      [16] V. Khranovskyy, U. Grossner, O. Nilsen, V. Lazorenko, G.V. Lashkarev, B.G. Svensson , R. Yakimova, Thin Solid Films 515 (2006) 472–476. https://doi.org/10.1016/j.tsf.2005.12.269.

      [17] Z. Ben Achour, T. Ktari, B. Ouertani, O. Touayar, B. Bessais b, J. Ben Brahim, Sensors and Actuators A 134 (2007) 447.

      [18] K.T. Ramakrishna Reddy, T.B.S. Reddy, I. Forbes, R.W. Miles, Highly oriented and conducting ZnO:Ga layers grown by chemical spray pyrolysis, Surf. Coat. Technol. 151–152 (2002) 110–113. https://doi.org/10.1016/S0257-8972(01)01593-6.

      [19] Y. Caglar et al. / Spectrochimica Acta Part A 67 (2007) 1113–1119. https://doi.org/10.1016/j.saa.2006.09.035.

  • Downloads

  • How to Cite

    Mahmoudzadeh Pirvahshi, M. (2018). The study of transparent conducting gallium doped ZnO thin films in order to use in solar cells. International Journal of Physical Research, 6(2), 56-59. https://doi.org/10.14419/ijpr.v6i2.13805