Analytic solutions of the chiral nonlinear schrödinger equations investigated by an efficient approach

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    This paper studies the chiral nonlinear Schrödinger equations, describing a central role in the developments of quantum me-chanics, particularly in the field of quantum Hall effect, where chiral excitations are known to appear. More precisely, in this paper, we acquired new exact solutions of the chiral nonlinear (1+1) and (1+2)-dimensional Schrödinger equations by using the modified Kudraysov method. As outcomes, some of the new exact traveling wave solutions for the equations above is formally produced. All solutions are plotted in the view of three-dimensional (3D) and two-dimensional (2D) line shape through the MATLAB software for investigating the real significance of the studied equations. The periodic type of solitons is generated by employing modified Kudryashov method which is different from other studied methods.

     


  • Keywords


    Chiral Nonlinear (1+1)-Dimensional Schrödinger Equation; Chiral Nonlinear (1+2)-Dimensional Schrödinger Equation; Modified Kudryashov Method; New Exact Traveling Wave Solutions; Symbolic Computation.

  • References


      [1] Wang, M., Zhou, Y., & Li, Z. (1996). Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Physics Letters A, 216(1-5), 67–75.https://doi.org/10.1016/0375-9601(96)00283-6.

      [2] Zayed, E. M. E., &Gepreel, K. A. (2009). The -expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. Journal of Mathematical Physics, 50(1), 013502.https://doi.org/10.1063/1.3033750.

      [3] Fan, E. (2000). Extended tanh-function method and its applications to nonlinear equations. Physics Letters A, 277(4-5), 212–218.https://doi.org/10.1016/S0375-9601(00)00725-8.

      [4] Abdou, M. A. (2007). The extended F-expansion method and its application for a class of nonlinear evolution equations. Chaos, Solitons & Fractals, 31(1), 95–104.https://doi.org/10.1016/j.chaos.2005.09.030.

      [5] Liu, S., Fu, Z., Liu, S., & Zhao, Q. (2001). Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Physics Letters A, 289(1-2), 69–74.https://doi.org/10.1016/S0375-9601(01)00580-1.

      [6] Ma, W. X., & Lee, J. H. (2009). A transformed rational function method and exact solutions to the (3+1) dimensional Jimbo–Miwa equation. Chaos, Solitons & Fractals, 42(3), 1356–1363.https://doi.org/10.1016/j.chaos.2009.03.043.

      [7] Chen, Y., & Yan, Z. (2006). The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations. Chaos, Solitons & Fractals, 29(4), 948–964.https://doi.org/10.1016/j.chaos.2005.08.071.

      [8] Khater, M. M., & Kumar, D. (2017). New exact solutions for the time fractional coupled Boussinesq–Burger equation and approximate long water wave equation in shallow water. Journal of Ocean Engineering and Science, 2(3), 223–228.https://doi.org/10.1016/j.joes.2017.07.001.

      [9] Akbulut, A., & Kaplan, M. (2017). Auxiliary equation method for time-fractional differential equations with conformable derivative. Computers & Mathematics with Applications.https://doi.org/10.1016/j.camwa.2017.10.016.

      [10] Hosseini, K., Samadani, F., Kumar, D., &Faridi, M. (2018). New optical solitons of cubic-quartic nonlinear Schrödinger equation. Optik, 157, 1101–1105.https://doi.org/10.1016/j.ijleo.2017.11.124.

      [11] Kumar, D., Seadawy, A. R., &Joardar, A. K. (2018). Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chinese Journal of Physics, 56(1), 75–85.https://doi.org/10.1016/j.cjph.2017.11.020.

      [12] Kumar, D., Darvishi, M. T., &Joardar, A. K. (2018). Modified Kudryashov method and its application to the fractional version of the variety of Boussinesq-like equations in shallow water. Optical and Quantum Electronics, 50(3), 128.https://doi.org/10.1007/s11082-018-1399-y.

      [13] Joardar, A. K., Kumar, D., & Al Woadud, K. A. (2018). New exact solutions of the combined and double combined sinh–cosh–Gordon equations via modified Kudryashov method. International Journal of Physical Research, 6(1), 25–30.https://doi.org/10.14419/ijpr.v6i1.9261.

      [14] Kumar, D., Hosseini, K., &Samadani, F. (2017). The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics. Optik, 149, 439–446.https://doi.org/10.1016/j.ijleo.2017.09.066.

      [15] Kumar, D., Seadawy, A. R., & Chowdhury, R. (2018). On new complex soliton structures of the nonlinear partial differential equation describing the pulse narrowing nonlinear transmission lines. Optical and Quantum Electronics, 50(2), 108.https://doi.org/10.1007/s11082-018-1383-6.

      [16] Kumar, D., Manafian, J., Hawlader, F., &Ranjbaran, A. (2018). New closed-form soliton and other solutions of the Kundu–Eckhaus equation via the extended sinh-Gordon equation expansion method. Optik, 160, 159-167.https://doi.org/10.1016/j.ijleo.2018.01.137.

      [17] Foroutan, M., Kumar, D., Manafian, J., & Hoque, A. (2018). New explicit soliton and other solutions for the conformable fractional Biswas–Milovic equation with Kerr and parabolic nonlinearity through an integration scheme. Optik, 170, 170–192.https://doi.org/10.1016/j.ijleo.2018.05.129.

      [18] Seadawy, A. R., Kumar, D., & Chakrabarty, A. K. (2018). Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method. The European Physical Journal Plus, 133(5), 182.https://doi.org/10.1140/epjp/i2018-12027-9.

      [19] Seadawy, A. R., Kumar, D., Hosseini, K., &Samadani, F. (2018). The system of equations for the ion sound and Langmuir waves and its new exact solutions. Results in Physics, 9, 1631–1634.https://doi.org/10.1016/j.rinp.2018.04.064.

      [20] Manafian, J., Foroutan, M., &Guzali, A. (2017). Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model. The European Physical Journal Plus, 132(11), 494.https://doi.org/10.1140/epjp/i2017-11762-7.

      [21] Zhou, Q., Mirzazadeh, M., Zerrad, E., Biswas, A., &Belic, M. (2016). Bright, dark, and singular solitons in optical fibers with spatio-temporal dispersion and spatially dependent coefficients. Journal of Modern Optics, 63(10), 950-954.https://doi.org/10.1080/09500340.2015.1111456.

      [22] Biswas, A., Ullah, M. Z., Asma, M., Zhou, Q., Moshokoa, S. P., &Belic, M. (2017). Optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle. Optik, 139, 16-19.https://doi.org/10.1016/j.ijleo.2017.03.111.

      [23] Biswas, A., Khan, K. R., Mahmood, M. F., &Belic, M. (2014). Bright and dark solitons in optical metamaterials. Optik, 125(13), 3299-3302.https://doi.org/10.1016/j.ijleo.2013.12.061.

      [24] Kaplan, M. (2017). Applications of two reliable methods for solving a nonlinear conformable time-fractional equation. Optical and Quantum Electronics, 49(9), 312.https://doi.org/10.1007/s11082-017-1151-z.

      [25] Eslami, M., Rezazadeh, H., Rezazadeh, M., &Mosavi, S. S. (2017). Exact solutions to the space–time fractional Schrödinger–Hirota equation and the space–time modified KDV–Zakharov–Kuznetsov equation. Optical and Quantum Electronics, 49(8), 279.https://doi.org/10.1007/s11082-017-1112-6.

      [26] Griguolo, L., &Seminara, D. (1998). Chiral solitons from dimensional reduction of Chern-Simons gauged non-linear Schrödinger equation: classical and quantum aspects. Nuclear Physics B, 516(1-2), 467–498.https://doi.org/10.1016/S0550-3213(97)00810-9.

      [27] Nishino, A., Umeno, Y., &Wadati, M. (1998). Chiral nonlinear Schrödinger equation. Chaos, Solitons & Fractals, 9(7), 1063–1069.https://doi.org/10.1016/S0960-0779(97)00184-7.

      [28] Vyas, V. M., Patel, P., Panigrahi, P. K., Kumar, C. N., & Greiner, W. (2008). Chirped chiral solitons in the nonlinear Schrödinger equation with self-steepening and self-frequency shift. Physical Review A, 78(2), 021803.https://doi.org/10.1103/PhysRevA.78.021803.

      [29] Justin, M., Hubert, M. B., Betchewe, G., Doka, S. Y., &Crepin, K. T. (2018). Chirped solitons in derivative nonlinear Schrödinger equation. Chaos, Solitons & Fractals, 107, 49-54.https://doi.org/10.1016/j.chaos.2017.12.010.

      [30] Biswas, A. (2009). Perturbation of chiral solitons. Nuclear physics B, 806(3), 457–461.https://doi.org/10.1016/j.nuclphysb.2008.05.023.

      [31] Biswas, A., Mirzazadeh, M., &Eslami, M. (2014). Soliton solution of generalized chiral nonlinear Schrödinger’s equation with time-dependent coefficients. Acta Phys. Pol. B, 45(4), 849-866.https://doi.org/10.5506/APhysPolB.45.849.

      [32] Eslami, M. (2016). Trial solution technique to chiral nonlinear Schrödinger’s equation in (1+2)-dimensions. Nonlinear Dynamics, 85(2), 813–816.https://doi.org/10.1007/s11071-016-2724-2.

      [33] Younis, M., Cheemaa, N., Mahmood, S. A., & Rizvi, S. T. (2016). On optical solitons: the chiral nonlinear Schrödinger equation with perturbation and Bohm potential. Optical and Quantum Electronics, 48(12), 542.https://doi.org/10.1007/s11082-016-0809-2.

      [34] Bulut, H., Sulaiman, T. A., &Demirdag, B. (2018). Dynamics of soliton solutions in the chiral nonlinear Schrödinger equations. Nonlinear Dynamics, 91(3), 1985-1991.https://doi.org/10.1007/s11071-017-3997-9.

      [35] Raza, N., & Javid, A. (2018). Optical dark and dark-singular soliton solutions of (1+2)-dimensional chiral nonlinear Schrödinger’s equation. Waves in Random and Complex Media, 1-13.https://doi.org/10.1080/17455030.2018.1451009.


 

View

Download

Article ID: 23755
 
DOI: 10.14419/ijpr.v7i2.23755




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.