Structural and elastic properties, Vickers hardness and Debye temperature of (B1) BP: DFT study

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    A theoretical study of the structural parameters and elastic constants of boron phosphide (BP) compound with cubic rocksalt structure has been carried out using ab-initio density functional theory (DFT) and density functional perturbation theory (DFPT) calculations based on the plane-wave and pseudopotential (PW-PP) approach. Elastic anisotropy factors, Cauchy pressure, inverted Pugh’s ratio, aggregate mechanical moduli (shear modulus, Young's modulus and Poisson's ratio), Vickers hardness HV, elastic wave velocity as well as the Debye temperature θD and the melting point have been also calculated. Our obtained results are in general in good agreement with other data of the literature. The deviation between our obtained value (4.225 Å) of the lattice constant and the theoretical value (4.282 Å) of the literature is around 1.33%, while that between our obtained value (169.7 GPa) of the bulk modulus and the theoretical one (171 GPa) is only around 0.77%. The calculated values of HV and θD were found at around 30.5 GPa and 1254 K (1314.4 K), respectively.

     

     


  • Keywords


    Density Functional Theory; Boron Phosphide; Structural Parameters; Elastic Constants; Vickers Hardness; Debye Temperature.

  • References


      [1] A. Bouhemadou, R. Khenata, M. Kharoubi, T. Seddik, Ali H. Reshak, and Y. Al-Douri, " FP-APW + lo calculations of the elastic properties in zinc-blende III-P compounds under pressure effects ", Computational Materials Science, Vol. 45, No. 2, (2009), pp. 474-479. https://doi.org/10.1016/j.commatsci.2008.11.013.

      [2] F. El Haj Hassan, H. Akbarzadeh, and M. Zoaeter, "Structural properties of boron compounds at high pressure ", Journal of Physics: Condensed Matter, Vol. 4, No. 3, (2004), pp. 293–301. https://doi.org/10.1088/0953-8984/16/3/009.

      [3] S. Daoud, N. Bioud, and N. Lebga, " Elastic, optoelectronic and thermal properties of boron phosphide ", Journal of Nano- and Electronic Physics,Vol. 5, No. 4, (2013), pp. 04061 (6 pages). https://jnep.sumdu.edu.ua/download/numbers/2013/4/articles/jnep_2013_V5_04061.pdf.

      [4] H. Meradji, S. Drablia, S. Ghemid, H. Belkhir, B. Bouhafs, and A. Tadjer, " First-principles elastic constants and electronic structure of BP, BAs, and BSb ", Physica Status Solidi B, Vol. 241, No. 13, (2004) pp. 2881-2885. https://doi.org/10.1002/pssb.200302064.

      [5] O. Arbouche, B. Belgoumène, B. Soudini, Y. Azzaz, H. Bendaoud, and K. Amara, " First-principles study on structural properties and phase stability of III-phosphide (BP, GaP, AlP and InP) ", Computational Materials Science, Vol. 47, No. 3, (2010), pp. 685-692. https://doi.org/10.1016/j.commatsci.2009.10.009.

      [6] S. Daoud, K. Loucif, N. Bioud, N. Lebga, and L. Belagraa, " Effect of hydrostatic pressure on the structural, elastic and electronic properties of (B3) boron phosphide ", Pramana Journal of Physics, Vol. 79, No. 1, (2012), pp. 95-106. https://doi.org/10.1007/s12043-012-0283-8.

      [7] M. Ustundag, M. Aslan, and Battal G. Yalcin, "The first-principles study on physical properties and phase stability of Boron-V (BN, BP, BAs, BSb and BBi) compounds", Computational Materials Science, Vol.81, , No. 1, (2014), pp. 471-477.https://doi.org/10.1016/j.commatsci.2013.08.056.

      [8] P. Kocinski and M. Zbroszczyk, " Calculated structural and electronic properties of boron phosphide under pressure ", Semiconductor Science and Technology, Vol. 10, No. 11, (1995), pp. 1452-1457.https://doi.org/10.1088/0268-1242/10/11/004.

      [9] D. Varshney, G. Joshi, M. Varshney, and S. Shriya, "Pressure induced mechanical properties of boron based pnictides", Solid State Sciences, Vol. 12, (2010), pp. 864-872. https://doi.org/10.1016/j.solidstatesciences.2010.02.003.

      [10] W. Wettling and J. Windscheif, "Elastic constants and refractive index of boron phosphide", Solid State Communications, Vol.50, No. 1, (1984), pp. 33-34. https://doi.org/10.1016/0038-1098(84)90053-X.

      [11] S. Daoud, N. Bioud, and N. Lebga, " Mechanical, piezoelectric and some thermal properties of (B3) BP under pressure ", Journal of Central South University, Vol. 21, No. 1, (2014), pp. 58-64. https://doi.org/10.1007/s11771-014-2394-4.

      [12] S. Daoud, N. Bioud, N. Lebgaa, and R. Mezouar "Optoelectronic and thermal properties of boron- bismuth compound", International Journal of Physical Research, Vol. 2, No. 2, (2014), pp. 27-31. http://www.sciencepubco.com/index.php/IJPR/article/view/2760. https://doi.org/10.14419/ijpr.v2i2.2760.

      [13] S. Daoud, "EOS parameters and elastic properties of cubic rock-salt BP ", International Journal of Physical Research, Vol. 7, No. 1, (2019), pp. 7-10. https://www.sciencepubco.com/index.php/IJPR/article/view/25863.

      [14] Y. Wen, L. Wang, H. Liu, and L. Song, "Ab-initio study of the elastic and mechanical properties of B19 TiAl ", Crystals, Vol. 7, No. 2, (2017), pp. 39 (11 pages). https://doi.org/10.3390/cryst7020039.

      [15] S. F. Pugh, "XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol.45, No. 367, (1954), pp. 823–843.https://doi.org/10.1080/14786440808520496.

      [16] The ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated, and other contributors. http://www.abinit.org.

      [17] N. Troullier and J. L. Martins, "Efficient pseudopotentials for plane-wave calculations ", Physical Review B, Vol.43, No. 3, (1991), pp. 1993–2002. https://doi.org/10.1103/PhysRevB.43.1993.

      [18] M. Fuchs and M. Scheffler, "Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory", Computer Physics Communications, Vol.119, No. 1, (1999), pp. 67-98. https://doi.org/10.1016/S0010-4655(98)00201-X.

      [19] J. P. Perdewand Y. Wang, "Accurate and simple analytic representation of the electron-gas correlation energy", Physical Review B, Vol.45, No. 23, (1992) 13244–13249. https://doi.org/10.1103/PhysRevB.45.13244.

      [20] H.J. Monkhorst and J.D. Pack, "Special points for Brillouin-zone integrations", Physical Review B, Vol. 13, No. 12, (1976), pp.5188 - 5192. https://doi.org/10.1103/PhysRevB.13.5188.

      [21] S. B. Zhang and M. L. Cohen, "High-pressure phases of III-V zinc-blende semiconductors", Physical Review B, Vol. 35, No. 14, (1987), pp. 7604-7610. http://journals.aps.org/prb/abstract/10.1103/PhysRevB.35.7604.‎https://doi.org/10.1103/PhysRevB.35.7604.

      [22] T. Özer, "Study of first principles on anisotropy and elastic constants of YAl3 compound", Canadian Journal of Physics, Vol. 98, No. 4, (2020), pp. 357-363.https://doi.org/10.1139/cjp-2018-0448.

      [23] Y.O. Ciftci and E. Ateser, "A theoretical study of pressure-induced effects on phase transition and elastic properties of AsTh compound", Journal of Electronic Materials Vol. 49, No. 3, (2020), pp. 2086–2094. https://doi.org/10.1007/s11664-019-07891-3.

      [24] N. Bioud, X.W. Sun, N. Bouarissa, and S. Daoud, "Elastic constants and related properties of compressed rocksalt CuX (X = Cl, Br): Ab-initio study", Zeitschrift Für Naturforsch A, Vol. 73, No. 8, (2018), pp. 767-773. https://doi.org/10.1515/zna-2018-0120.

      [25] N. Lebga, S. Daoud, X-W. Sun, N. Bioud, and A. Latreche, "Mechanical and thermophysical properties of cubic rock-salt AlN under high pressure ", Journal of Electronic Materials, Vol. 47, No. 7, (2018), pp. 3430-3439.https://doi.org/10.1007/s11664-018-6169-x.

      [26] S. Daoud, "Mechanical and piezoelectric properties, sound velocity and Debye temperature of thallium-phosphide under pressure", International Journal of Advanced Research in Physical Science, Vol. 1, No. 6, (2014), pp. 1-11. www.arcjournals.org/pdfs/ijarps/v1i6/1.pdf.

      [27] S. Daoud, N. Bouarissa, A. Benmakhlouf, and O. Allaoui, "High-pressure effect on elastic constants and their related properties of MgCa intermetallic compound", Physica Status Solidi B, Vol. 257, (2020), pp. 1900537 (10 pages).https://doi.org/10.1002/pssb.201900537.

      [28] S. Stølen, T. Grande, and N. L. Allan, "Chemical thermodynamics of materials", John Wiley & Sons Ltd, England, (2004). ISBN 0-471-49230-2.

      [29] S. Adachi, "Properties of group-IV, III-V and II-VI semiconductors", John Wiley & Sons Ltd, England, (2005). ISBN 0-470-09032-4.https://doi.org/10.1002/0470090340.

      [30] Q. Li, X. Zhang, H. Liu, H. Wang, M. Zhang, Q. Li, and Y. Ma, " Structural and mechanical properties of platinum carbide ", Inorganic Chemistry Vol. 53, No. 11, (2014), pp. 5797-5802. https://doi.org/10.1021/ic5006133.

      [31] S. Daoud, K. Loucif, N. Bioud, and N. Lebga, "First-principles study of structural, elastic and mechanical properties of zinc-blende boron nitride (B3-BN) ", Acta Physica Polonica A, Vol. 122, No. 1, (2012), pp. 109-115. https://doi.org/10.12693/APhysPolA.122.109.

      [32] A. Bouhemadou, D. Allali, S. Bin-Omran, E. Muhammad Abud AlSafi, R. Khenata, and Y. Al-Douri, "Elastic and thermodynamic properties of the SiB2O4 (B=Mg, Zn and Cd) cubic spinels: An ab initio FP-LAPW study", Materials Science in Semiconductor Processing, Vol. 38, No. 10, (2015), pp. 192–202. https://doi.org/10.1016/j.mssp.2015.04.021.

      [33] V. V. Brazhkin, A. G. Lyapin, and R. J. Hemley, " Harder than diamond: Dreams and reality", Philosophical Magazine A, Vol.82, No. 2, (2002), pp. 231-253. https://doi.org/10.1080/01418610208239596.

      [34] X. H. Wang, H.W. Wang, Z. J. Wei, and C. M. Zou, "Al3Ni alloy synthesized at high pressures and its Debye temperature", Journal of Alloys and Compounds, Vol. 774, No. 2, (2019), pp. 364–369. https://doi.org/10.1016/j.jallcom.2018.09.331.

      [35] M. Blackman, "On the calculation of characteristic temperatures from the elastic constants", Philosophical Magazine, Vol.42, No. 335, (1951), pp. 1441-1442. https://doi.org/10.1080/14786445108560963.

      [36] H. Siethoff, "Debye temperature, self-diffusion and elastic constants of intermetallic compounds", Intermetallics, Vol.5, No. 8, (1997), pp. 625-632. https://doi.org/10.1016/S0966-9795(97)00037-X.


 

View

Download

Article ID: 30695
 
DOI: 10.14419/ijpr.v8i1.30695




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.