Quantum non-demolition measurement in the interferometer


  • Dmitri Khokhlov Sumy State University




cavity quantum electrodynamics, interferometer, photon, quantum non-demolition measurement, which way information


The schemes of the arrangements based on the Mach-Zehnder interferometer and the interferometer with two polarizing beam splitters are considered. The interferometers in both the schemes are equipped with some devices, creating a Kerr medium, to perform the quantum non-demolition measurement of a single photon. Such a device gives which way information of the photon while preserving the work of the interferometer.


[1] N. Bohr, Atomic Physics and Human Knowledge, Science Editions, New York, 1961.
[2] B.-G. Englert, Fringe visibility and which way information: An inequality, Phys. Rev. Lett. 77 (1996) 2154–2157.
[3] D.L. Khokhlov, Interaction of the classical particle and quantum apparatus, Int. J. Gen. Syst. 44 (2015) 106–110.
[4] D.L. Khokhlov, Interference of a single photon in the Mach-Zehnder interferometer, Quan. Inf. Rev. 7 (2019) 7–10.
[5] Y. Aharonov, D.Z. Albert, L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys.
Rev. Lett. 60 (1988) 1351–1354.
[6] Y. Aharonov, E. Cohen, A.C. Elitzur, Foundations and applications of weak quantum measurements, Phys. Rev. A 89 (2014) 052105.
[7] K.J. Resch, J.S. Lundeen, A.M. Steinberg, Experimental realization of the quantum box problem, Phys. Lett. A 324 (2004) 125–131.
[8] A. Danan, D. Farfurnik, S. Bar-Ad, L. Vaidman, Asking photons where they have been, Phys. Rev. Lett. 111 (2013) 240402.
[9] D.L. Khokhlov, Modification of the two-slit experiment with a single photon, Optik, 126 (2015) 5301–5303.
[10] D.L. Khokhlov, Scheme of the weak measurement of the polarization state of the photon, Optik 127 (2016) 4089–4091.
[11] D.L. Khokhlov, Which way information in the non-perturbative post-measurement, Quantum Matter 4 (2015) 127–128.
[12] D.L. Khokhlov, Scheme of the arrangement for attack on the protocol BB84, Optik 127 (2016) 7083–7087.
[13] P. Grangier, J.A. Levenson, J.-P. Poizat, Quantum non-demolition measurements in optics, Nature 396 (1998) 537–542.
[14] S. Haroche, J.-M. Raimond, Cavity quantum electrodynamics, Scientific American 268 (1993) 54–60, 62.
[15] A. Reiserer, S. Ritter, G. Rempe, Nondestructive detection of an optical photon, Science 342 (2013) 1349–1351.
[16] S. Kono, K. Koshino, Y. Tabuchi, A. Noguchi, Y. Nakamura, Quantum non-demolition detection of an itinerant microwave photon, Nature Physics 14
(2018) 546–549.
[17] J.-C. Besse, S. Gasparinetti, M.C. Collodo et al., Single-shot quantum nondemolition detection of individual itinerant microwave photons, Phys. Rev. X
8 (2018) 021003.
[18] N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, K. Edamatsu, Observation of optical-fibre Kerr nonlinearity at the single-photon level, Nature
Photonics 3 (2009) 95–98.
[19] G. Kirchmair, B. Vlastakis, Z. Leghtas et al., Observation of quantum state collapse and revival due to the single-photon Kerr effect, Nature 495 (2013)
[20] J. Sinclair, D. Angulo, N. Lupu-Gladstein, K. Bonsma-Fisher, A.M. Steinberg, Observation of a large, resonant, cross-Kerr nonlinearity in a cold
Rydberg gas, Phys. Rev. Res. 1 (2019) 033193.
[21] R. Menzel, D. Puhlmann, A. Heuer, W.P. Schleich, Wave-particle dualism and complementarity unraveled by a different mode, Proc. Natl. Acad. Sci.
USA 109 (2012) 9314–9319.