Melting point and microhardness of Cu2-II-IV-VI4 compounds


  • Salah DAOUD Bordj Bou Arreridj University
  • Hamza Rekab-Djabri Laboratory of Micro and Nanophysics (LaMiN), Oran ENP, BP 1523, El M’Naouer, 31000, Oran, Algeria
  • Nabil Beloufa Laboratory of Micro and Nanophysics (LaMiN), Oran ENP, BP 1523, El M’Naouer, 31000, Oran, Algeria





Cu2-II-IV-VI4 Semiconductors, Melting Point, Microhardness, Linear Correlation.


In the present study, we investigate the correlation between the melting point Tm and the microhardness H of some tetragonal and ortho-rhombic Cu2-II-IV-VI4 semiconducting compounds. After analyzing the experimental data of both Tm and H, we found that the melting point Tm of Cu2-II-IV-VI4 compounds correlates linearly with the microhardness H. With a coefficient of the correlation of around 0.98, the best fit was obtained using the linear model as follow: Tm = 175.54 H +792.27. The significance of the regression is given as the probability P of the null hypothesis (that there is no correlation) P < 0.0001, while the average error on the estimation of the melting point Tm was found only at around 1.54%. Our expression related Tm and H was used to predict the microhardness H of Cu2ZnSnS4 (CZTS) material. Our value (2.68 GPa) of H of CZTS deviates from the theoretical one (2.7 GPa) by only around 0.74%.


[1] S. Adachi, "Earth-Abundant Materials for Solar Cells", John Wiley & Sons Ltd, (2015). ISBN 9781119052777

[2] S.A. Khalate, R.S. Kate, J.H. Kim, S.M. Pawar, R.J. Deokate, "Effect of deposition temperature on the properties of Cu2ZnSnS4 (CZTS) thin films, Superlattices and Microstructures: Vol. 103, No.3, (2017), pp. 335-342.

[3] T. Gürel, C. Sevik, T. Çağin, "Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures", Physical Review B, Vol. 84, (2011) 205201(7 pages).

[4] Tanaji P. Gujar, Vaishali. R. Shinde, Ram S. Katiyar, "Characterization of pulsed laser deposited Cu2ZnSnS4 thin films for solar cell ", MRS Online Proceedings Library, Vol. 1447, (2012), pp. 53-58.

[5] S. Daoud, "Sound velocities and thermal properties of BX (X=As, Sb) compounds", International Journal of Scientific World: Vol. 3, No.1, (2015), pp. 43-48.

[6] N. Bioud, X-W. Sun, N. Bouarissa, S. Daoud, "Elastic constants and related properties of compressed rocksalt CuX (X = Cl, Br): Ab initio study", Zeitschrift Für Naturforschung A, Vol. 73, No. 8, (2018), pp. 767-773.

[7] S. Daoud, "Mechanical and piezoelectric properties, sound velocity and Debye temperature of thallium-phosphide under pressure", International Journal of Advanced Research in Physical Science, Vol. 1, No. 6, (2014), pp. 1-11.

[8] S. Daoud, P. K. Saini, H. Rekab-Djabri, "Elastic constants and optical phonon frequencies of BX (X= P, As, and Sb) semiconductors: Semi-empirical prediction", International Journal of Physical Research: Vol. 8, No.2, (2020), pp. 45-49.

[9] M. Quintero, E. Moreno, S. Alvarez, J. Marquina, C. Rincón, E. Quintero, P. Grima, J-A. Heano, M. A. Macías, "Lattice parameter values and phase transitions for the Cu2-II-IV-S4 (Se4) (II=Mn, Fe, Co; IV=Si, Ge, Sn) magnetic semiconductor compounds", Revista Latinoamericana de Metalurgia y Materiales. Vol. 34, No. 1, (2014), pp. 28-38.

[10] S. Daoud, N. Bouarissa, "Elastic, piezoelectric and thermal properties of zinc-blende AlN under pressure ", Theoretical Chemistry Accounts, Vol. 138, No. 4, (2019), pp. 49 (10 pages).

[11] S. Daoud, "Comment on structural phase transition, electronic and elastic properties in TlX (X = N, P, As) compounds: Pressure-induced effects" Computational Materials Science, Vol. 111, No. 1, (2016), pp. 532 - 533.

[12] S. Daoud, N. Bioud, N. Lebga, " Erratum to Elastic and piezoelectric properties, sound velocity and Debye temperature of (B3) BBi compound under pressure", Pramana Journal of Physics, Vol. 86, No. 4, (2016), pp. 945-946.

[13] H. Matsushita, T. Ichikawa, A. Katsui, "Structural, thermodynamical and optical properties of Cu2-II-IV-VI4 quaternary compounds", Journal of Materials Science, Vol. 40, No. 8, (2005), pp. 2003–2005.

View Full Article: