Analysis of the wave solutions of the nonlinear evolution equations help of advanced exp⁡(-φ(ξ))-expansion scheme

  • Authors

    • Loskar Nowsher Ali European University of Bangladesh
    • Md.habibul Bashar European University of Bangladesh
    2024-11-01
    https://doi.org/10.14419/g38cyk56
  • Time Fractional Derivative; The Advanced Exp⁡(-Φ(Ξ))-Expansion Method; Exact Solution; The General ( )-Dimensional Nonlinear Evolu-tion Equation; Mathematical Physics.
  • Abstract

    With the assistance of emblematic calculation programming, the current paper explores the specific voyaging wave arrangements from the general (2+1)- layered nonlinear development conditions by utilizing the advanced exp⁡(-φ(ξ))-expansion with time-partial boundaries. As a result, the used technique is effectively utilized and recently created some precise voyaging wave arrangements. The recently created arrangements have been communicated regarding mathematical and exaggerated capabilities. The created arrangements have been inquired into their comparing condition with the guide of the emblematic calculation programming Maple. The elements of nonlinear wave arrangements are analyzed and shown by maple18 in 3D, and 2D plots, and form plots with explicit upsides of the mind boggling boundaries are plotted. The advanced exp⁡(-φ(ξ))-expansion strategy is a solid treatment for looking through fundamental nonlinear waves that enhance an assortment of water waves in the long-frequency system that emerges in designing fields.

  • References

    1. Al-Amr MO. Exact solutions of the generalized (2+1)-dimensional nonlinear evolution equations via the modified simple equation method. Comput. Math. Appl. 2015;69(5):390-397. https://doi.org/10.1016/j.camwa.2014.12.011.
    2. Najafi M, Najafi M, Arbabi S. New Exact Solutions for the Generalized (2+1)-dimensional Nonlinear Evolution Equations by Tanh-Coth Method. Int. J. Modern Theoretical Phys. 2013; 2(2):79-85. https://doi.org/10.14419/ijams.v1i2.685.
    3. Najafi M, Arbabi S, Najafi M. New application of sine-cosine method for the generalized (2+ 1) dimensional nonlinear evolution equa-tions. Int. J. Adv. Math. Sci. 2013;1(2):45-49. https://doi.org/10.14419/ijams.v1i2.685.
    4. Darvishi MT, Najafi M, Najafi M. New application of EHTA for the generalized (2+ 1)- dimensional nonlinear evolution equations. Int. J. Math. Comp. Sci. 2010;6(3):132-138.
    5. Emrullah Yasar, Yakup Yıldırım and Abdullahi Rashid Adem, Perturbed optical solitons with spatio-temporal dispersion in (2 + 1)-dimensions by extended Kudryashov method Optik 158 (2018) 1–14. https://doi.org/10.1016/j.ijleo.2017.11.205.
    6. Harun-Or Roshid, Md. Mamunur Roshid, Nizhum Rahman and Mst. Razia Pervin, New solitary wave in shallow water, plasma and ion acoustic plasma via the GZK-BBM equation and the RLW equation, Propulsion and Power Research, 6(1) (2017)49–57. https://doi.org/10.1016/j.jppr.2017.02.002.
    7. H. O. Roshid, M. F. Hoque and M. A. Akbar, New extended (G’/G)-expansion method for traveling wave solutions of nonlinear partial differential equations (NPDEs) in mathematical physics, Italian. J. Pure Appl. Math. 33 (2014) 175-190.
    8. L. L. Feng andT.T. Zhang, Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrodinger equation, Appl. Math. Lett. 78 (2018) 133-140. https://doi.org/10.1016/j.aml.2017.11.011.
    9. Xu Shuwei and He Jingsong, The rogue wave and breather solution of the Gerdjikov-Ivanov equation, Journal of Mathematical Physics 53, (2012). https://doi.org/10.1063/1.4726510.
    10. A. Biswas, M. Mirzazadeh, M. Eslami, Q. Zhou, A. Bhrawy, M. Belic, Optical solitons in nano-fibers with spatio-temporal dispersion by trial solution method, Optik 127 (18) (2016) 7250–7257 https://doi.org/10.1016/j.ijleo.2016.05.052.
    11. Jalil manafian heris and isa zamanpour, Analytical treatment of the Coupled Higgs Equation and the Maccari System via Exp-Function Method, 33 (2013) 203-216.
    12. Y. M. Zhao, New Exact Solutions for a Higher-Order Wave Equation of KdV Type Using the Multiple Simplest Equation Method, Journal of Applied Mathematics, 2014 (2014), 1-13. https://doi.org/10.1155/2014/848069.
    13. Md. Rafiqul Islam and Harun-Or-Roshid, Application of -expansion method for Tzitzeica type nonlinear evolution equa-tions, Journal for Foundations and Applications of Physics, 4 (1) (2017).
    14. N. Rahman, S. Akter, H. O. Roshid and M. N. Alam, Traveling Wave Solutions of The (1+1)-Dimensional Compound KdVB equation by –Expansion Method, Global Journal of Science Frontier Research,13 (8) (2014) 7-13.
    15. R. Islam, M. N. Alam, A. K. M. K. S. Hossain, H. O. Roshid and M. A. Akbar, Traveling wave solutions of nonlinear evolution equa-tions via -expansion method, Global Journal of Scientific Frontier Research,13 (11) (2014) 63-71.
    16. N. Kadkhoda, H. Jafari, Analytical solutions of the Gerdjikov–Ivanov equation by using expansion method, Optik 139 (2017) 72–76. https://doi.org/10.1016/j.ijleo.2017.03.078.
    17. Amfilokhiev, VB, Voitkunskii, YI, Mazaeva, NP, Khodorkovskii, YS Flows of polymer solutions in the case of convective accelera-tions Tr. Leningr. Korablestroit. Inst. 96(1975)3-9.
    18. Md. Mamunur Roshid and Harun-Or Roshid, Exact and explicit traveling wave solutions to two nonlinear evolution equations which describe incompressible viscoelastic Kelvin-Voigt fluid, Heliyon 4 (2018). https://doi.org/10.1016/j.heliyon.2018.e00756.
    19. Omer Faruk Gozukızıl and Samil Akcagıl, The tanh-coth method for some nonlinear pseudoparabolic equations with exact solutions, Advances in Difference Equations, 2013 (2013)143. https://doi.org/10.1186/1687-1847-2013-143.
    20. Ak Turgut, Tugba Aydemir, Asit Saha and Abdul Hamid Kara, Propagation of nonlinear shock waves for the generalised Oskolkov equation and its dynamic motions in the presence of an external periodic perturbation, Pramana – J. Phys. (2018) 78-90. https://doi.org/10.1007/s12043-018-1564-7.
    21. Rahhman M.M., Aktar A. and Roy K.C. Analytical Solutions of Nonlinear Coupled Schrodinger–KdV Equation via Advance Exponen-tial Expansion. American Journal of Mathematical and Computer Modelling, 3(3), 46-51, (2018) https://doi.org/10.11648/j.ajmcm.20180303.11.
    22. 22. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65 – 70, (2014) https://doi.org/10.1016/j.cam.2014.01.002.
    23. Abdeljawad T., On conformable fractional calculus. J. Comput. Appl. Math. 279, 57 – 69, (2015) https://doi.org/10.1016/j.cam.2014.10.016.
    24. G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results. Comput. Math. Appl. 51(9), 1367 – 1376, (2006) https://doi.org/10.1016/j.camwa.2006.02.001.
  • Downloads

  • How to Cite

    Nowsher Ali, L., & Bashar, M. (2024). Analysis of the wave solutions of the nonlinear evolution equations help of advanced exp⁡(-φ(ξ))-expansion scheme. International Journal of Physical Research, 12(2), 97-103. https://doi.org/10.14419/g38cyk56