Soliton solutions to the (3+1)-dimensional KP and BA models using advanced exp(-ϕ(ξ))-expansion scheme in mathematical physics
-
2024-11-01 https://doi.org/10.14419/390cx076 -
The BA Model; The (3+1)-Dimensional KP Equation; Advance Exp(-Φ(Ξ))-Expansion Method; Traveling Wave Solution; Rouge Wave Solution; Periodic Solitons. -
Abstract
In this manuscript, the main motivation is the implement of the advanced exp(-ϕ(ξ)) -expansion method to construct the soliton solution, which contains some controlling parameters of two distinct equations via the Biswas-Arshed (BA) model and the (3+1)- dimensional Kadomtsev-Petviashvili (KP) equation. Here the behaviors of the solutions are presented in graphically under some condition on those parameters. The height of the wave, wave direction, and angle of the obtained wave are formed by substituting the particular values of the considerations over showing figures with control plot. With the collaboration of the advanced exp(-ϕ(ξ))-expansion method, we construct entirely the solitary wave results as well as rogue type soliton, combined singular soliton, kink, singular kink, bright and dark soliton, periodic shape, double periodic shape soliton etc. Therefore, it is remarkable to perceive that the advanced exp(-ϕ(ξ))-expansion method is easy, compatible and powerful mathematical tool to elucidation of exact results to other non-linear equivalences.
-
References
- Coste C, (1998).Nonlinear Schrödinger equation and superfluid hydrodynamics, The European Physical Journal Condensed Matter and Complex Systems, 1(245–253. https://doi.org/10.1007/s100510050178.
- Yu W, Liu W, Triki H, Zhou Q, Biswas A. (2019).Phase shift, oscillation and collision of the anti-dark solitons for the (3+1)-dimensional coupled nonlinear Schrödinger equation in an optical fiber communication system, Nonlinear Dyn. 97,1253–1262. https://doi.org/10.1007/s11071-019-05045-y.
- Xie XY, Tian B, Sun WR, Wang M, Wang YP.( 2015).Solitary wave and multi-front wave collisions for the Bogoyavlenskii–Kadomtsev–Petviashili equation in physics, biology and electrical networks. Mod Phys Lett B.29:1550192. https://doi.org/10.1142/S0217984915501924.
- W. Liu, Y. Zhang, Z. Luan, Q. Zhou, M. Mirzazadeh, M. Ekici and A. Biswas, (2019).Dromion-like soliton interactions for nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers, Nonlinear Dyn. 96, 729-736 https://doi.org/10.1007/s11071-019-04817-w.
- Seadawy AR, Ali A, Althobaiti S, Sayed A.(2021). Propagation of wave solutions of nonlinear Heisenberg ferromagnetic spin chain and Vakhnenko dynamical equations arising in nonlinear water wave models. Chaos SolitonsFract.;146:110629. https://doi.org/10.1016/j.chaos.2020.110629.
- Islam SMR, Khan K, Al woadud KMA. (2018).Analytical studies on the Benney-Luke equation in mathematical physics. Waves Random Complex Media.; 28:300-309. https://doi.org/10.1080/17455030.2017.1342880.
- Tian SF.(2020). Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation. Appl. Math. Lett.; 100: 106056. https://doi.org/10.1016/j.aml.2019.106056.
- Seadawy AR, Lu D, Khater MMA.(2018).Structure of optical soliton solutions for the generalized higher-order nonlinear Schrödinger equation with light-wave promulgation in an optical fiber. Opt Quant Electron.; 50: 333. https://doi.org/10.1007/s11082-018-1600-3.
- Islam SMR. (2015).Application of an enhanced 〖(G〗^'⁄G)-expansion method to find exact solutions of nonlinear PDEs in particle physics. Am J Appl Sci. 2015; 12: 836-846. https://doi.org/10.3844/ajassp.2015.836.846.
- Bashar MH, Islam SMR. (2020).Exact solutions to the (2+1)-Dimensional Heisenberg ferromagnetic spin chain equation by using modified simple equation and improve F-expansion methods. Phys Open.; 5: 100027. https://doi.org/10.1016/j.physo.2020.100027.
- Lu J,Duan X,Li C andHong X(2021).Explicit solutions for the coupled nonlinear Drinfeld–Sokolov–Satsuma–Hirota system Results Phys. 24 104128 https://doi.org/10.1016/j.rinp.2021.104128.
- Islam SMR, Bashar MH, Noor M.(2021). Immeasurable soliton solutions and enhanced 〖(G〗^'⁄G)-expansion method. Phys Open9:100086. https://doi.org/10.1016/j.physo.2021.100086.
- Bashar MH, Islam SMR, Kumar D.(2021). Construction of traveling wave solutions of the (2+1)-Dimensional Heisenberg ferromagnetic spin chain equation. Partial Diff Eqs Appl Math.; 4: 100040. https://doi.org/10.1016/j.padiff.2021.100040.
- Kaplan M, Akbulut A.(2021).The analysis of the soliton-type solutions of conformable equations by using generalized Kudryashov method. Optical Quantum Electronics.; https://doi.org/10.21203/rs.3.rs-315162/v1.
- Kumar D, Park C, Tamanna N, Paul GC, Osman MS. (2020).Dynamics of two-mode Sawada-Kotera equation: Mathematical and graphical analysis of its dual-wave solutions. Results Phys.; 19:103581. https://doi.org/10.1016/j.rinp.2020.103581.
- Devi M, Yadav S and Arora R (2021).Optimal system, invariance analysis of fourth-Order nonlinear ablowitz-Kaup-Newell-Segur water wave dynamical equation using lie symmetry approach Appl. Math. Comput. 404 126230 https://doi.org/10.1016/j.amc.2021.126230.
- Tariq K U, Zabihi A, Rezazadeh H, Younis M, Rizvi S T R and Ansari R (2021). On new closed form solutions: The (2+1)-dimensional Bogoyavlenskii system Mod. Phys. Lett. B. 35 2150150 https://doi.org/10.1142/S0217984921501505.
- Majeed A, Kamran M, Asghar N and Baleanu D (2021). Numerical approximation of inhomogeneous time fractional Burgers–Huxley equation with B-spline functions and Caputo derivative Eng. Comput. https://doi.org/10.1007/s00366-020-01261-y.
- Kumar A, Ilhan E, Ciancio A, Yel G and Baskonus H M (2021). Extractions of some new travelling wave solutions to the conformable Date-Jimbo-Kashiwara-Miwa equation AIMS Mathematics 6 4238-4264 https://doi.org/10.3934/math.2021251.
- Tahir M, Awan AU. (2020).Optical singular and dark solitons with Biswas–Arshed model by modified simple equation method.Optik.;202:163523. https://doi.org/10.1016/j.ijleo.2019.163523.
- Tahir M, Awan AU. (2020).Optical traveling wave solutions for the Biswas–Arshed model in Kerr and non-Kerr law media. Pramana-J Phys.; 94:29. https://doi.org/10.1007/s12043-019-1888-y.
- Sajid N, Akram G. (2020).Novel solutions of Biswas-Arshed equation by newly newly Φ^6-model expansion method. Optic.; 211:164564. https://doi.org/10.1016/j.ijleo.2020.164564.
- Yildirim Y, Optical (2019).solitons of Biswas-Arshed equation by trial equation technique. Optik; 182: 876-883. https://doi.org/10.1016/j.ijleo.2019.01.084.
- Yildirim Y, (2019).Optical solitons to Biswas-Arshed model in birefringent fibers using modified simple equation architecture. Optik.; 182: 1149-1162. https://doi.org/10.1016/j.ijleo.2019.02.013.
- Rehman HU, Saleem MS, Zubair M, Jafar S, Latif I, (2019).Optical solitons with Biswas-Arshed model using mapping method. Optik.; 194: 163091. https://doi.org/10.1016/j.ijleo.2019.163091.
- Ekici M, Sonmezoglu A, (2019).Optical solitons with Biswas-Arshed equation by the extended trial function method. Optik. 177: 13-20. https://doi.org/10.1016/j.ijleo.2018.09.134.
- Kadomtsev BB, Petviashvili VI, (1970).On the stability of solitary waves in weakly dispersive media. Sov Phys Dokl.; 15: 539–541.
- Ma WX, Xia T, (2013).Pfaffianized systems for a generalized Kadomtsev–Petviashvili equation. Phys Scr; 87: 055003. https://doi.org/10.1088/0031-8949/87/05/055003.
- Wazwaz AM, (2011).Multi-front waves for extended form of modified Kadomtsev–Petviashvili equations. Appl Math Mech.; 32: 875–880. https://doi.org/10.1007/s10483-011-1466-6.
- Ren B, Yu J, Liu XZ, (2015).New interection solutions of (3+1)-dimensional KP and (2+1)-dimensional Boussinesq equations. Abstract Appl Analysis.;2015: 213847. https://doi.org/10.1155/2015/213847.
- He L, Zhao Z,(2020). Multiple lump solutions and dynamics of the generalized (3+1)-dimensional KP equation. Mod Phys Lett B.; 34: 2050167. https://doi.org/10.1142/S0217984920501675.
- Xu Y, Zheng X, Xin J, (2021).New explicit and exact traveling wave solutions of (3+1)-dimensional KP equation. Math Founda Comput.; 4: 105-105. https://doi.org/10.3934/mfc.2021006.
- Ma YL, Li BQ, (2018).Rogue wave solutions, soliton, and rough wave missed solution for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation in fluids.; 32: 1850358. https://doi.org/10.1142/S021798491850358X.
- Shahen NHM, Foyjonnesa, Bashar MH, Ali MS, Al-Mamun A, (2020).Dynamical Analysis of long-wave phenomena for the nonlinear confrmable space-time fractional (2+1)-dimensional AKNS equation in water wave mechanics. Heliyon; 6: e05276. https://doi.org/10.1016/j.heliyon.2020.e05276.
- Bashar MH, Tahseen T, Shahen NHM, (2021).Application of the advance exp(-ϕ(ξ))-expansion method to the nonlinear conformable time-fractional partial differential equations. Turk J Math Comput Sci.; 13: 68-80.
- Biswas A, Arshed S. (. 2018).Optical solitons in presence of higher order dispersions and absence of self-phase modulation. Optik; 174: 452-459. https://doi.org/10.1016/j.ijleo.2018.08.037.
-
Downloads
-
How to Cite
Zillu , M. M. ., Ghosh, S., & Biswas, A. (2024). Soliton solutions to the (3+1)-dimensional KP and BA models using advanced exp(-ϕ(ξ))-expansion scheme in mathematical physics. International Journal of Physical Research, 12(2), 104-115. https://doi.org/10.14419/390cx076