Quasi-linear correlation between shear and young’s moduli in some polycrystalline ceramics

  • Authors

    • Salah Daoud Bordj Bou Arreridj University, Algeria
    • Pawan-Kumar Saini Department of Physics, Government College, Hansi, Haryana,125033, India
    • Hamza Rekab-Djabri Faculty of Nature and Life Sciences and Earth Sciences, Akli Mohand-Oulhadj University, 10000, Bouira, Algeria
    2024-03-06
    https://doi.org/10.14419/vt3yt649
  • Abstract

    This work aims to investigate the correlation between the shear modulus and the Young’s modulus of some pore-free polycrystalline ceram-ics. Our study shows that the shear modulus correlates quasi-linearly with the Young’s modulus. The best fit was obtained using the linear model. The fit of the shear modulus G as a function of the Young modulus E obeys this linear expression: G = 0.43E - 7.7 (where both G and E are expressed in GPa). The coefficient of the correlation was found at around 0.994. Our expression was used to predict the shear modulus G of some other polycrystalline ceramics, especially: Dy2O3, Er2O3, and Y2O3 materials, which are estimated at around 65.6, 72.4, and 51.8 GPa, respectively. We attempt also to estimate the Vickers hardness of our materials of interest using an empirical expression of the literature. Unfortunately our predicted results are larger than those reported previously in the literature.

  • References

    1. R. G. Munro, "Analytical representations of elastic moduli data with simultaneous dependence on temperature and porosity", Journal of Research of the National Institute of Standards and Technology, Vol. 109, No. 5, (2004), pp. 497-503. https://doi.org/10.6028/jres.109.036.
    2. S. Daoud, "Correlation study of optical, mechanical and thermal properties of BAs material and its experimental energy gap", Interna-tional Journal of Physical Research, Vol.5, No.2, (2017), pp. 79-82. https://doi.org/10.14419/ijpr.v5i2.8314.
    3. N. Bioud and R. Mezouar, "Crystal density of CaS under pressure up to 40 GPa", International Journal of Advanced Chemistry, Vol. 10, No 1, (2022), pp. 29-31. https://www.sciencepubco.com/index.php/IJAC/article/view/32063. https://doi.org/10.14419/ijac.v10i1.32063.
    4. S. Daoud, P. K. Saini, and H. Rekab-Djabri, "Elastic constants and optical phonon frequencies of BX (X= P, As, and Sb) semiconduc-tors: Semi-empirical prediction", International Journal of Physical Research, Vol. 8, No.2, (2020), pp. 45-49. https://doi.org/10.14419/ijpr.v8i2.31001.
    5. D. Chen, J. Geng, Y. Wu, M. Wang and C. Xia, " Insight into physical and thermodynamic properties of X3Ir (X = Ti, V, Cr, Nb and Mo) compounds influenced by refractory elements: A first-principles calculation", Crystals, Vol. 9, No. 2, (2019), pp. 104 (15 pages). https://doi.org/10.3390/cryst9020104.
    6. S. Daoud, N. Bioud,"Semi-empirical prediction of physical prop (B3) TlP compound", International Journal of Physical Research, Vol. 2, No. 2, (2014), pp. 72-77. https://doi.org/10.14419/ijpr.v2i2.3361.
    7. S. Daoud, A. Bencheikh and L. Belagraa, "Quasi-linear correlation between high-frequency and static dielectric constants in II-VI and III-V semiconductors ", International Journal of Physical Research, Vol. 5, No.1, (2017), pp. 4-6. https://doi.org/10.14419/ijpr.v5i1.6961.
    8. F. Bounab, N. Bouarissa, A. Merrouche, A. Benmakhlouf, S. Daoud, and N. Chelali, "Theoretical investigation of elastic constants and related properties of compressed PbO2",Journal of Computational Electronics, Vol. 18, No. 4, (2019), pp. 1111-1118. https://doi.org/10.1007/s10825-019-01372-w.
    9. S. Daoud, "Linear correlation between Debye temperature and lattice thermal conductivity in II-VI and III-V semiconductors", Interna-tional Journal of Scientific World, Vol. 3, No.2, (2015), pp. 216-220. https://doi.org/10.14419/ijsw.v3i2.4793.
    10. S. Daoud and A. Latreche, "Optical properties and electronic polarizability of boron-antimonide semiconductor ", International Journal of Physical Research: Vol. 5, No.2, (2017), pp. 43-45. https://doi.org/10.14419/ijpr.v5i2.7910.
    11. M. Kazan, E. Moussaed, R. Nader, and P.Masri, "Elastic constants of aluminum nitride", Physica Status Solidi C, Vol.4, (2007), pp. 204-207. https://doi.org/10.1002/pssc.200673503.
    12. S. Daoud, A. Latreche, and P. K. Saini, "Theoretical investigation of acoustic wave velocity of aluminum phosphide under pressure", International Journal of Physical Research, Vol. 7, No. 1, (2019), pp. 3-6. https://doi.org/10.14419/ijpr.v7i1.23681.
    13. S. Daoud, "Sound velocities and Debye temperature of BeSe under high pressure up to 50 GPa", International Journal of Physical Re-search, Vol. 5, No. 1, (2017), pp. 7-10. https://doi.org/10.14419/ijpr.v5i1.7013.
    14. A. Das Majumdar, P. Padmakumar, Munjal N. Rajni, and U. Kamboj, "First principle study on structural properties of boron com-pounds". In: C. Prakash, S. Singh, and G. Krolczyk, (eds) "Advances in functional and smart materials", Lecture Notes in Mechanical Engineering, Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-4147-4_19.
    15. S. Kadri, M. Tourab, M. Berkani, R. Amraoui, Z. Bordjiba, "Study of structural, elastic, thermal and transport properties of ternary X (X = Co, Rh and Ir) MnAs obtained by DFT", East European Journal of Physics, Vol. 1, (2022), pp. 47-57. https://doi.org/10.26565/2312-4334-2022-1-07.
    16. S. Daoud, N. Bioud, N. Lebga, and R. Mezouar, "Optoelectronic and thermal properties of boron- bismuth compound", International Journal of Physical Research, Vol. 2, No. 2, (2014), pp. 27-31. https://doi.org/10.14419/ijpr.v2i2.2760.
    17. S. Daoud, "Simplified expressions for calculating Debye temperature and melting point of II-VI and III-V semiconductors", Interna-tional Journal of Scientific World, Vol. 3, No.2, (2015), pp. 275-279. https://doi.org/10.14419/ijsw.v3i2.5314.
    18. L. Zhang, K. Gao, A. Elias, Z. Dong, W. Chen, " Porosity dependence of elastic modulus of porous Cr3C2 ceramics ", Ceramics Inter-national, Vol. 40, No. 1, (2013), pp. 191-198. https://doi.org/10.1016/j.ceramint.2013.05.122.
    19. J. B. Wachtman, W. R. Cannon, and M. J. Matthewson, "Mechanical properties of ceramics ", John Wiley & Sons Ltd, (2009). ISBN: 978-0-471-73581-6. https://doi.org/10.1002/9780470451519.
    20. I. R. Shein, K. I. Shein, and A. L. Ivanovskii, "Elastic properties of thorium ceramics ThX (X = C, N, O, P, As, Sb, S, Se)", Technical Physics Letters, Vol. 33, No. 2, (2007), pp. 128-131. https://doi.org/10.1134/S1063785007020113.
    21. J. Y. Baro and S. T. Tonga, "First principal calculations to predict the preferred crystal and structural parameter of indium phosphate", International Journal of Engineering and Applied Physics (IJEAP), Vol. 2, No. 3, (2022), pp. 502-514. https://ijeap.org/ijeap/article/view/89
    22. S. Daoud, "EOS parameters and elastic properties of cubic rock-salt BP", International Journal of Physical Research: Vol. 7, No. 1, (2019), pp. 7-10. https://doi.org/10.14419/ijpr.v7i1.25863.
    23. A. Benamrani, S. Daoud, and P. K. Saini, " Structural, elastic and thermodynamic properties of ScP compound: DFT study ", Journal of Nano- and Electronic Physics, Vol. 13, No 1, (2021), pp. 01008 (5pp). https://doi.org/10.14419/ijpr.v7i1.25863.
    24. S. Daoud, R. Mezouar and A. Benmakhlouf, " Structural and piezoelectric coefficients of AlP under pressure ", International Journal of Physical Research, Vol. 6, No. 2, (2018), pp. 53-55. https://doi.org/10.21272/jnep.13(1).01008.
    25. C-J. Qi, Y-H. Jiang, Y-Z. Liu, and R. Zhou, " Elastic and electronic properties of XB2 (X = V, Nb, Ta, Cr, Mo, and W) with AlB2 struc-ture from first principles calculations ", Ceramics International, Vol. 40, (2014), pp. 5843– 5851. https://doi.org/10.1016/j.ceramint.2013.11.026.
    26. M. Anani, C. Mathieu, S. Lebid, Y. Amar, Z. Chama and H. Abid, "Model for calculating the refractive index of a III-V semiconduc-tor", Computational Materials Science, Vol.41, No. 4, (2008), pp. 570-575. https://doi.org/10.1016/j.commatsci.2007.05.023.
    27. S. Daoud, "Mechanical behavior of aluminum phosphide under high pressure", Acta Physica Polonica A, Vol. 133, No.1, (2018), pp. 23-27. https://doi.org/10.12693/APhysPolA.133.23.
    28. S. Daoud, R. Mezouar, and A. Benmakhlouf, " Equation of state and some other properties of rock-salt AlN ", International Journal of Physical Research, Vol. 6, No. 1, (2018), pp. 49-52. https://doi.org/10.14419/ijpr.v6i1.10754.
    29. D. R. Biswas and R. M. Fulrath,"Mechanical properties of porous PNZT polycrystalline ceramics ", Lawrence Berkeley Laboratory, 1, 1977; Berkeley, California. https://digital.library.unt.edu/ark:/67531/metadc1063724/
    30. Substrates, 2nd, Edition, Chapter 2, doi:10.1016/b978-081551423-7.5000. In Hybrid Microcircuit Technology Handbook, edited by J. J. Licari and L. R. Enlow, William Andrew Inc., (1998). ISBN 978-0-8155-1423-7
    31. A. L. Dragoo, and I. L. Spain, "The elastic moduli and their pressure and temperature derivatives for calcium oxide", Journal of Phys-ics and Chemistry of Solids, Vol. 38, No. 7, (1977), pp. 705–710. https://doi.org/10.1016/0022-3697(77)90061-0.
    32. S. Amari and S. Daoud, "Structural phase transition, elastic constants and thermodynamic properties of TmAs: An ab-initio study", Computational Condensed Matter, Vol. 33, (2022), pp. e00764 (8 pages). https://doi.org/10.1016/j.cocom.2022.e00764.
    33. S. Daoud, P. K. Saini and H. Rekab-Djabri, "Theoretical prediction of some physical properties of BxAl1-xSb ternary alloys", Journal of Nano- and Electronic Physics, Vol. 12, No 6, (2020), pp. 06008 (5 pages). https://doi.org/10.21272/jnep.12(6).06008.
    34. R. Mezouar, N. Bioud, H. Rekab-Djabri, N. Beloufa, and Z. Rouabah, "Theoretical prediction of mechanical properties of BxAl1-xSb ternary semiconducting alloys", Annals of West University of Timisoara-Physics, Vol. 64, (2022), pp. 22-36. https://doi.org/10.2478/awutp-2022-0002.
    35. V. Kumar, A.K. Shrivastava, and V. Jha, "Bulk modulus and microhardness of tetrahedral semiconductors", Journal of Physics and Chemistry of Solids, Vol.71, No.11, (2010), pp. 1315 – 1320. https://doi.org/10.1016/j.jpcs.2010.07.012.
    36. M. A. Berding, A.Sher, M. Van Schilfgaarde, and An-Ban Chen, "Fracture and hardness characteristics ofsemiconductor alloys", Final Report, SRI International, November 1988. http://www.dtic.mil/dtic/tr/fulltext/u2/a204807.pdf.
    37. H. Niu, S. Niu, and A. R. Oganov, " Simple and accurate model of fracture toughness of solids", Journal of Applied Physics, Vol. 125, No. 6, (2019), pp. 065105(6 pages). https://doi.org/10.1063/1.5066311.
    38. S. Daoud, N. Bouarissa, A. Benmakhlouf and O. Allaoui, "High-pressure effect on elastic constants and their related properties of MgCa intermetallic compound", Physica Status Solidi B, Vol. 257, No. 6, (2020), pp. 1900537 (10 pages). https://doi.org/10.1002/pssb.201900537.
    39. Y. El Krimi and R. Masrour, " First-principles calculations of electronic, magnetic, mechanical and thermoelectric properties of tetrago-nal Mn2PtSn-Ferromagnetic phase: Ab initio calculations", Modern Physics Letters B, Vol. xx, No xx, (2024), pp. 2450080 (22 pages). https://doi.org/10.1142/S0217984924500805.
    40. Y. El Krimi and R. Masrour, " Study of structural, elastic, electronic, optical and magnetic properties of Heusler Mn2NiAl: Ab initio calculations", Modern Physics Letters B, Vol. xx, No xx, (2024), pp. 2450081 (19 pp). https://doi.org/10.1142/S0217984924500817.
    41. R. Masrour, A. Jabar, S. Labidi, Y. El Krimi, M. Ellouze, M. Labidi, and A. Amara, " Study of structural, elastic, thermal, electronic and magnetic properties of heusler Mn2NiGe: An Ab initio calculations and Monte Carlo simulations ", Materials Today Communica-tions, Vol. 26, No 3, (2021), pp.101772 (10 pages). https://doi.org/10.1016/j.mtcomm.2020.101772.
    42. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills and O. Eriksson, "Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2", Journal of Applied Physics, Vol. 84, No. 9, (1998), pp. 4891–4904. https://doi.org/10.1063/1.368733.
    43. N. Bioud, " Some physical properties of K2TlAsX6 (X = Cl, Br) and CsPbBr3 semiconducting compounds ", International Journal of Advanced Chemistry, Vol. 12, No 1, (2024), pp. 26–30. https://www.sciencepubco.com/index.php/IJAC/article/view/32462
    44. N. Bioud, "Debye temperature of CaO under high pressure up to 65.2 GPa ", International Journal ofAdvanced Chemistry, Vol. 11, No 1, (2023), pp. 6–9. https://doi.org/10.14419/ijac.v11i1.32228.
    45. M. Iuga, G. Steinle-Neumann, and J. Meinhardt, "Ab-initio simulation of elastic constants for some ceramic materials", The European Physical Journal B, Vol. 58, (2007), pp. 127–133. https://doi.org/10.1140/epjb/e2007-00209-1.
    46. S. Amari and B. Bouhafs, "Ab initio full-potential study of mechanical properties and magnetic phase stability of californium monopnictides (CfN and CfP) ",Journal of Nuclear Materials, Vol. 478, No. 9, (2016), pp. 149–157. https://doi.org/10.1016/j.jnucmat.2016.06.012.
    47. Y. Bourourou, S. Amari, I.E. Yahiaoui and B. Bouhafs, "First principles predictions of electronic and elastic properties of BaPb2As2 in the ThCr2Si2 -type structure", Physica C: Superconductivity and its applications, Vol. 544, (2018), pp. 18–21. https://doi.org/10.1016/j.physc.2017.10.013.
    48. N. Lebga, S. Daoud, X-W. Sun, N. Bioud, and A. Latreche, "Mechanical and thermophysical properties of cubic rock-salt AlN under high pressure", Journal of Electronic Materials, Vol. 47, No. 7, (2018), pp. 3430-3439. https://doi.org/10.1007/s11664-018-6169-x.
    49. R. M. Hazen and L. W. Finger, "High pressure and high temperature crystal chemistry of beryllium oxide", Journal of Applied Physics, Vol. 59, No. 11, (1986), pp. 3728–3733. https://doi.org/10.1063/1.336756.
    50. W. Yang, R. G. Parr and L. Uytterhoeven, "New relation between hardness and compressibility of minerals", Physics and Chemistry of Minerals, Vol. 15, (1987), pp. 191-195. https://doi.org/10.1007/BF00308783.
    51. N. Bioud and N. Benchiheub, "Pressure effect on some physical properties of calcium oxide material ", Chemical Physics Impact, Vol. 7, (2023), pp. 100342 (5 pages). https://doi.org/10.1016/j.chphi.2023.100342.
    52. R. Mezouar and N.Logzit," Plasmon energy and microhardness of BxAl1-xSb alloys: semi-empirical prediction", International Journal of Physical Research, Vol. 11, No 1, (2023), pp. 1-4. https://doi.org/10.14419/ijpr.v11i1.32245.
    53. R. Khatun, M. A. Rahman, M. Z. Hasan and K. M. Hossain, "Effects of pressure on the structural, mechanical, anisotropic, and elec-tronic properties of MgTi2O4 via density functional theory", The European Physical Journal B, Vol. 94, (2021), pp. 113 (9 pages). https://doi.org/10.1140/epjb/s10051-021-00119-6.
    54. F. Bengasmia, A. Benamrani, L. Boutahar, H. Rekab-Djabri, and S. Daoud, " Hydrostatic pressure effect on the structural parameters of GaSb semiconducting material: Ab-initio calculations", Journal of Physical & Chemical Research, Vol. 1, No. 2, (2022), pp. 25 – 30. https://doi.org/10.21272/jnep.12(6).06008.
  • Downloads

  • How to Cite

    Daoud, S., Saini , P.-K., & Rekab-Djabri, H. (2024). Quasi-linear correlation between shear and young’s moduli in some polycrystalline ceramics. International Journal of Physical Research, 12(1), 1-4. https://doi.org/10.14419/vt3yt649