Pressure broadening and narrowing due to oxygen and nitrogen gas mixtures at 1270 nm band: part III

  • Authors

    • Muhammad Ahmad Al-Jalali Taif University
    2024-06-22
    https://doi.org/10.14419/a2831v85
  • Partial Pressure; Voigt FWHM; Lorentzian Width; Gaussian Width.
  • Abstract

    Collisional effects on the absorption spectrum of oxygen and nitrogen gas mixtures at 1270 nm band appear as a broadening or narrowing at the component of Lorentzian width in the Voigt profile. The deconvolution method of spectral lines reveals two kinds of bands, the first centered at 1264 nm, and the second centered at 1268 nm. At high pressures, the Gaussian full width may be fixed, and Voigt's full width at half maximum (FWHM) nearly equals to Lorentzian full width. Partial pressures of each gas were between 1-10 bar at 298 K. New results highlight the effect of nitrogen as a collisional partner on the oxygen spectrum.

    PACS: 32.30. Bv; 33.20. Ea; 33.20.-t; 34.50.-s; 34.50. Ez; 51.30. +I; 87.64. km.

  • References

    1. P. H. Krupenie, “The spectrum of molecular oxygen”, J. Phys. Chem. Ref. Data 1(1972) 423-534. https://doi.org/10.1063/1.3253101.
    2. B. F. Minaev, V. D. Nikolaev, and H. Ågren, “Interaction study of the (O2)2 dimer”, Spectrosc. Lett.: An International Journal for Rap-id Communication, 29 (1996) 677-695. https://doi.org/10.1080/00387019608007061.
    3. M. Bartolomei, E. Carmona-Novillo, M. I. Hernández, et al., Accurate ab initio intermolecular potential energy surface for the quintet state of the dimer, Chem. Phys.128(2008) 214304 -10. https://doi.org/10.1063/1.2929852.
    4. T. Hidemori, N. Akai, A. Kawai, and K Shibuya, “Intensity enhancement of weak O2 a1Δg→X3Σg-emission at 1270 nm by collisions with foreign gases” J. Phys. Chem. A 116(2012) 2032−2038. https://doi.org/10.1021/jp2124586.
    5. L.W. Bader, and E. A. Ogryzlo, “Reactions of O2(1Δg) and O2(1Σ g+)”, Discuss. Faraday Soc. 37(1964) 46-56. https://doi.org/10.1039/df9643700046.
    6. A. U. Khan, and M. Kasha, “Chemiluminescence arising from simultaneous transitions in pairs of singlet oxygen molecules”, J. Am. Chem. Soc.92(1970) 3293–3300. https://doi.org/10.1021/ja00714a010.
    7. C. A. Long, and G. E. Ewing, “The infrared spectrum of bound state oxygen dimers in the gas phase”, Chem. Phys. Lett.9(1971) 225–229. https://doi.org/10.1016/0009-2614(71)85036-4.
    8. C. A. Long, and G. E. Ewing, “Spectroscopic investigation of van der Waals molecules. I. The infrared and visible spectra of (O2)2”, J. Chem. Phys. 58(1973) 4824-4834. https://doi.org/10.1063/1.1679066.
    9. A. P. Billington, P. Borrell, and N. H. Rich, “Low-temperature spectroscopic measurements of the ‘dimol’ transitions of singlet molecu-lar oxygen [O2(a1Δg)]”, J. Chem. SOC., Faraday Trans.2, 84(1988) 727-735. https://doi.org/10.1039/F29888400727.
    10. J. Wildt, E. H. Fink, P. Biggs, and R. P. Wayne, “The collision-induced radiation of O2(a 1Δg)”, J. Chem. Phys. 139(1989) 401– 407. https://doi.org/10.1016/0301-0104(89)80152-1.
    11. A. Ida, E. Furui, N. Akai, A. Kawai, and K. Shibuya, “Kinetic study on the photoabsorption process of gaseous O2 dimol at 630 nm in a wide pressure range”, Chem. Phys. Lett. 488(2010) 130 – 134. https://doi.org/10.1016/j.cplett.2010.02.022.
    12. K. Tsukino, T. Satoh, H. Ishii, and M. Nakata, “Development of a multichannel Fourier-transform spectrometer to measure weak chemiluminescence: Application to the emission of singlet-oxygen dimol in the decomposition of hydrogen peroxide with gallic acid and K3[Fe (CN)6]”, Chem. Phys. Lett. 457(2008) 444-447. https://doi.org/10.1016/j.cplett.2008.04.044.
    13. E. Furui, N. Akai, A. Ida, A. Kawai, and K. Shibuya, “Observation of collision-induced near-IR emission of singlet oxygen O2 a1Δg generated by visible light excitation of gaseous O2 dimol”, Chem. Phys. Lett. 471(2009) 45–49. https://doi.org/10.1016/j.cplett.2009.02.020.
    14. R. Thalman, and R. Volkamer, “Temperature dependent absorption cross-sections of O2–O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure”, Phys. Chem. Chem. Phys. 15(2013) 15371– 15381. https://doi.org/10.1039/c3cp50968k.
    15. D. Perner, and U. Platt, “Absorption of light in the atmosphere by collision pairs of oxygen (O2)2”, Geophys. Res. Lett. 7(1980) 1053-1056. https://doi.org/10.1029/GL007i012p01053.
    16. V. Dianov-Klokov, “Absorption spectrum of condensed oxygen in the 1.27–0.3 μ region”, Opt. Spectrosc. 20(1966)530-534.
    17. A. Horowitz, W. Schneider, and G. K. Moortgat, “The role of oxygen dimer in oxygen photolysis in the Herzberg continuum: a temper-ature dependence study”, J. Phys. Chem. 93(1989) 7859-7863. https://doi.org/10.1021/j100360a027.
    18. G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, and A R Ravishankara, “Absorption measurements of oxygen between 330 and 1140 nm”, J. Geophys. Res. 95(1990)18577-18582. https://doi.org/10.1029/JD095iD11p18577.
    19. A. Lofthus, and P. Krupenie, “The spectrum of molecular nitrogen”, J. Phys. Chem. Ref. Data 7(1977)113-303. https://doi.org/10.1063/1.555546.
    20. M. A. AL-Jalali, I. F. Aljghami, and Y. M. Mahzia, “Absorption Spectrum Deconvolution of Zero Air at 1270 nm Band”, Int. J. ChemTech Res. 8(2015)116-127. CODEN (USA): IJCRGG. ISSN: 0974-4290.
    21. F. R. Spiering, and W. J. van der Zande, “Collision induced absorption in the a1Δ (v = 2) ← X3Σ −g(v = 0) band of molecular oxygen”, Phys. Chem. Chem. Phys. 14(2012)9923–9928. https://doi.org/10.1039/c2cp40961e.
    22. S. Solomon, R. W. Portmann, R. W. Sanders, and J. S. Daniel, “Absorption of solar radiation by water vapor, oxygen, and related colli-sion pairs in the Earth's atmosphere”, J. Geophys. Res. 103(1998)3847-385. https://doi.org/10.1029/97JD03285.
    23. B. Mate, C. Lugez, G. T. Fraser, and W. J. Lafferty, “Absolute intensities for the O2 1.27 µm continuum absorption”, J. Geophys. Res.104(1999)585–590. https://doi.org/10.1029/1999JD900824.
    24. L. S. Rothman, I. E Gordon, Y. Babikov, et al., “The HITRAN2012 molecular spectroscopic database”, J. Quant. Spectrosc. Radial. Transfer 130(2013)4–50. https://doi.org/10.1016/j.jqsrt.2013.07.002.
    25. P. W. Rosenkranz, “Interference coefficients for overlapping oxygen lines in air”, J. Quant. Spectrosc. Radial. Transfer 39(1988) 287–297. https://doi.org/10.1016/0022-4073(88)90004-0.
    26. J. Humlíček, “Optimized computation of the Voigt and complex probability functions”, J. Quant. Spectrosc. Radiat. Transfer 27(1982)437- 444. https://doi.org/10.1016/0022-4073(82)90078-4.
    27. A. Bielski, H. Darowicki, and J. Szudy, “Broadening Effects of the 632.8 nm Nel Line Due to a Helium-Neon Mixture”, Z. Naturforsch 34a(1979)519 –520. https://doi.org/10.1515/zna-1979-0418.
    28. M. A. AL-Jalali, Y. M. Mahzia, “Competition between Lorentzian Gaussian width in pure oxygen absorption spectrum at 1264 nm band”, 46(2017)241–246. https://doi.org/10.1007/s12596-017-0409-y.
    29. S. Kassi, S. Guessoum, J. C. Acosta Abanto, et al., “Temperature dependence of the collision‐induced absorption band of o 2 near 1.27 µm”, Journal of Geophysical Research: Atmospheres, 126(13) (2021) pp. e2021JD034860. https://doi.org/10.1029/2021JD034860.
    30. J. Bai, L. Bai, J. Li, C. Huang, L. Guo, “Analysis of infrared spectral radiance of o2 1.27 µm band based on space-based limb detec-tion”, Remote Sens.15(19) (2023) 4648-4659. https://doi.org/10.3390/rs15194648.
    31. J. Bai, L. Bai, J. Li, C. Huang, an d. Guo, “Analysis of infrared spectral radiance of o2 1.27 μm band based on space-based limb detec-tion”, Remote Sens., 15(19) (2023)4648-4659 https://doi.org/10.3390/rs15194648.
    32. A. Bielski, J. Szudy, R S Trawiński, and J Wolnikowski, “Some remarks on pressure effects on 2p53p-2p5ns (n = 5, 6, 7) transitions in neon”, Acta Phys. Pol. A 81(1992)369–378) https://doi.org/10.12693/APhysPolA.81.369.
    33. R. Ciurylo, A. Bielski, S. Brym, et. al, “Speed-dependent effects on the 748.8 nm ne self-broadened line”, Acta Phys. Pol. A, 96(1999)359–372. https://doi.org/10.12693/APhysPolA.96.359.
    34. A. Urbanowicz, A. Bielski, D. Lisak, et. al “Temperature effects on the width, shift and asymmetry of 748.8 nm self-broadened neon line”. Eur. Phys. J. D 56(2010)17–25. https://doi.org/10.1140/epjd/e2010-00252-y.
    35. A. Urbanowicz, A. Bielski, D. Lisak, R. Ciuryło, and R. S. Trawiński, “Temperature effects on the width, shift and asymmetry of 748.8 nm self-broadened neon line”, Eur. Phys. J. D 61(2011)1-6. https://doi.org/10.1140/epjd/e2010-00252-y.
    36. H. Cybulskin, A. Bielski, R. Ciurylo, J Szudy, and R. S. Trawinski, “Power-law temperature dependence of collision broadening and shift of atomic and molecular rovibronic line”, J. Quant. Spectrosc. Radial. Transfer 120(2013) 90–103. https://doi.org/10.1016/j.jqsrt.2013.02.020.
    37. B. K. Antony, D. L. Niles, S. B. Wroblewski, at.al, “N2-, O2- and air-broadened half-widths and line shifts for transitions in the v3 band of methane in the 2726- to 3200-cm-1”, J. Mol. Spectrosc. 251(2008)268–281. https://doi.org/10.1016/j.jms.2008.03.012.
    38. B. J. Drouin, J. Fischer, and R. R. Gamache, “Temperature dependent pressure induced lineshape of O3 rotational transitions in air”, J. Quant. Spectrosc. Radial. Transfer 83(2004)63–81. https://doi.org/10.1016/S0022-4073(02)00293-5.
    39. A. Predoi-Cross, C. Holladay, H. Heunga, et. al, “Nitrogen-broadened lineshapes in the oxygen A-band: Experimental results and theo-retical calculations”, J. Mol. Spectrosc. 251(2008) 159–175. https://doi.org/10.1016/j.jms.2008.02.010.
    40. C. Hedges, N. Madhusudhan, “Effect of pressure broadening on molecular absorption cross sections in exoplanetary atmospheres”, Mon. Not. R. Astron. Soc. 458(2016) 1427–1449. https://doi.org/10.1093/mnras/stw278.
    41. M. A. AL-Jalali, I. F. Aljghami, and Y. M. Mahzia, “Virial expansion and its application to oxygen spectroscopic measurements at 1270 nm band”, J.Chem.Soc.Pak. 37(2015)1226-1233. http://jcsp.org.pk/ViewByVolume.aspx?v=1206&i=VOLUME%2037,%20NO6,%20DEC-2015.
    42. M. A. AL-Jalali, I. F. Aljghami, and Y. M. Mahzia, “Voigt deconvolution method and its applications to pure oxygen absorption spec-trum at 1270 nm band”, Spectrochim. Acta Part A Mol. Spectrosc. 157(2016)34-40. https://doi.org/10.1016/j.saa.2015.12.010.
    43. M. A. AL-Jalali, “Comparison between simple and advanced data analysis to pure oxygen absorption spectrum at the 1270 nm band”, J. Appl. Math. Phys. (JAMP) 3(2015)1114–1121. https://doi.org/10.4236/jamp.2015.39138.
    44. M.A. AL-Jalali, “Rotational Fine Structure of Pure Oxygen Spectrum at 1270 nm Band”, J. Chem. Bio. Phy. Sci. Sec. C7(1) (2017)084-091. https://www.jcbsc.org/issue-old/c/7/1. https://www.jcbsc.org/volume-old/physical/.
    45. M. A. AL-Jalali, and Y. M. Mahzia, “Pressure broadening and narrowing in pure oxygen absorption spectrum at 1270 nm band: part I”, J. Chem. Bio. Phy. Sci. Sec. C7(1) (2017) 092-101. https://www.jcbsc.org/volume-old/physical/.
    46. M. A. AL-Jalali, Y M Mahzia, “Pressure broadening and narrowing in pure oxygen absorption spectrum at 1270 nm band: part II”, J. Chem. Bio. Phy. Sci. Sec. C7(1) (2017)110-118. https://www.jcbsc.org/volume-old/physical/.
  • Downloads

  • How to Cite

    Ahmad Al-Jalali , M. (2024). Pressure broadening and narrowing due to oxygen and nitrogen gas mixtures at 1270 nm band: part III. International Journal of Physical Research, 12(2), 29-35. https://doi.org/10.14419/a2831v85