Superluminal graviton condensate vacuum
-
2024-07-26 https://doi.org/10.14419/bmr9g725 -
Quantum Gravity; Dark Energy; Dark Matter; Zero-Point Vacuum Energy; Graviton; Quantum Cosmology; Dark Sector. -
Abstract
In this study, we argue fundamentally and physically on the nature of the graviton as the only elementary particle in the universe, constituting the fabric of vacuum spacetime and all matter and all energy forms. We demonstrate that the universe's functioning is consistent with the current laws of physics and that a non-tachyonic graviton string-particle carrying superluminal energy exists. The graviton model proposed herein unifies dark energy, quantum gravity, and dressed zero-point vacuum energy field in a single energy manifold. The model provides an alternative interpretation of the vacuum energy, the dark energy, and the cosmological constant value as well as an explanation for the cosmological “coincidence problem”. Our model describes the zero-point vacuum energy as an evaporation product of hidden compacted extra dimensions superluminal energy of the universe, rather than being due to any supersymmetry fine-tuned fields cancellation. Furthermore, the proposed model also predicts how the graviton's superluminal oscillation is ticking down the remaining lifetime of the universe, acting as a cosmological clock. Spacetime should end after a Big Freeze or a Big Rip scenario governed by a global vacuum instantaneous catastrophic event, to which a new cycle of Big Bang follows. Our model explains why the massless spin 2 in-place superluminal vibrating graviton and condensate consisting everything including spacetime must be essentially the only massless cold boson elementary particle and why fundamentally the vacuum is superluminal condensate energy. An experiment with the Atlas detector is proposed to indirectly verify the theory by measuring potential superluminal propagation of dark photons. Essentially, the research reveals that the entire dark sector consists of superluminal energy, making it directly undetectable. Additionally, it suggests that quantum gravity originates from the dark sector.
-
References
- L. Smolin, Three roads to quantum gravity, Hachette UK, 2008.
- C. Rovelli, Loop Quantum Gravity, Living Rev. Relativ. 2008 111. 11 (2008) 1–69. https://doi.org/10.12942/lrr-2008-5.
- T. Rothman, S. Boughn, Can gravitons be detected?, Found. Phys. 36 (2006) 1801–1825. https://doi.org/10.1007/s10701-006-9081-9.
- F. Dyson, IS A GRAVITON DETECTABLE, https://doi.org/10.1142/S0217751X1330041X.
- K.P. Sinha, C. Sivaram, E.C.G. Sudarshan, Aether as a superfluid state of particle-antiparticle pairs, Found. Phys. 6 (1976) 65–70. https://doi.org/10.1007/BF00708664.
- K.G. Zloshchastiev, On Asymptotic Behavior of Galactic Rotation Curves in Superfluid Vacuum Theory, Astron. Reports. 65 (2021) 1078–1083. https://doi.org/10.1134/S1063772921100437.
- Weinberg, Steven, Cosmology, Cosm. (2008) 593. https://ui.adsabs.harvard.edu/abs/2008cosm.book.....W (accessed February 7, 2023).
- S. Weinberg, Lectures on Quantum Mechanics, in: 2nd ed., Cambridge University Press, Cambridge, 2015: p. 376. https://doi.org/10.1017/CBO9781316276105.
- A. Canepa, Searches for supersymmetry at the Large Hadron Collider, Rev. Phys. 4 (2019) 100033. https://doi.org/10.1016/j.revip.2019.100033.
- A. Farag Ali, S. Das, Cosmology from quantum potential, Phys. Lett. B. 741 (2015) 276–279. https://doi.org/10.1016/j.physletb.2014.12.057.
- S. Das, R.K. Bhaduri, Dark matter and dark energy from a Bose–Einstein condensate, Class. Quantum Gravity. 32 (2015) 105003. https://doi.org/10.1088/0264-9381/32/10/105003.
- J. Alfaro, R. Mancilla, Thermodynamics of graviton condensate, Eur. Phys. J. C 2021 8110. 81 (2021) 1–13. https://doi.org/10.1140/epjc/s10052-021-09638-z.
- S.K. Srivastava, Tachyon as a Dark Energy Source, (2004). https://arxiv.org/abs/gr-qc/0409074v4 (accessed September 22, 2023).
- K. Aoki, K.I. Maeda, Condensate of massive graviton and dark matter, Phys. Rev. D. 97 (2018) 044002. https://doi.org/10.1103/PhysRevD.97.044002.
- E. Di Valentino, A. Melchiorri, O. Mena, L. Visinelli, L.S. Marochnik, D.A. Usikov, Dark Energy from Virtual Gravitons (GCDM Model vs. ΛCDM Model), Universe 2022, Vol. 8, Page 464. 8 (2022) 464. https://doi.org/10.3390/universe8090464.
- J.A.R. Cembranos, M.C. Díaz, P. Martín-Moruno, Graviton-photon oscillation in alternative theories of gravity, Class. Quantum Gravi-ty. 35 (2018) 205008. https://doi.org/10.1088/1361-6382/aae1d9.
- J.Q. Quach, Spin gravitational resonance and graviton detection, Phys. Rev. D. 93 (2016) 104048. https://doi.org/10.1103/PhysRevD.93.104048.
- F. Ahmadi, GEOMETRICAL DARK ENERGY AND LORENTZ SYMMETRY VIOLATION IN BRANE-WORLDS, 45 (2014). https://doi.org/10.5506/APhysPolB.45.1015.
- D. Blas, M. M. Ivanov, S. Sibiryakov, Testing Lorentz invariance of dark matter, J. Cosmol. Astropart. Phys. 2012 (2012) 057. https://doi.org/10.1088/1475-7516/2012/10/057.
- H. Vucetich, O. Astronómico, Testing Lorentz Invariance Violation in Quantum Gravity Theories, (2005). https://arxiv.org/abs/gr-qc/0502093v1 (accessed September 8, 2023).
- J. Shen, X. Xue, Large Scale Lorentz Violation Gravity and Dark Energy, (2020) 459–475. https://doi.org/10.1142/9789811207402_0038.
- H. Martínez-Huerta, R.G. Lang, V. de Souza, Lorentz Invariance Violation Tests in Astroparticle Physics, Symmetry 2020, Vol. 12, Page 1232. 12 (2020) 1232. https://doi.org/10.3390/sym12081232.
- A. Eichhorn, A. Platania, M. Schiffer, Lorentz invariance violations in the interplay of quantum gravity with matter, Phys. Rev. D. 102 (2020) 026007. https://doi.org/10.1103/PhysRevD.102.026007.
- J.W. Moffat, Lorentz violation of quantum gravity, Class. Quantum Gravity. 27 (2010) 135016. https://doi.org/10.1088/0264-9381/27/13/135016.
- G. Amelino-Camelia, G. Calcagni, M. Ronco, Imprint of quantum gravity in the dimension and fabric of spacetime, Phys. Lett. B. 774 (2017) 630–634. https://doi.org/10.1016/j.physletb.2017.10.032.
- G. Amelino-Camelia, Quantum-Spacetime Phenomenology, Living Rev. Relativ. 2013 161. 16 (2013) 1–137. https://doi.org/10.12942/lrr-2013-5.
- G. Amelino-Camelia, Doubly Special Relativity, Nature. 418 (2002) 34–35. https://doi.org/10.1038/418034a.
- G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D. V. Nanopoulos, S. Sarkar, Tests of quantum gravity from observations of γ-ray bursts, Nat. 1998 3936687. 393 (1998) 763–765. https://doi.org/10.1038/31647.
- J. Bolmont, S. Caroff, M. Gaug, A. Gent, A. Jacholkowska, D. Kerszberg, C. Levy, T. Lin, M. Martinez, L. Nogués, A.N. Otte, C. Perennes, M. Ronco, T. Terzić, First Combined Study on Lorentz Invariance Violation from Observations of Energy-dependent Time Delays from Multiple-type Gamma-Ray Sources. I. Motivation, Method Description, and Validation through Simulations of H.E.S.S., MAGIC, and VERITAS Data Sets, Astrophys. J. 930 (2022) 75. https://doi.org/10.3847/1538-4357/ac5048.
- Z. Chang, X. Li, Lorentz invariance violation and symmetry in Randers–Finsler spaces, Phys. Lett. B. 663 (2008) 103–106. https://doi.org/10.1016/j.physletb.2008.03.045.
- E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B. 443 (1995) 85–126. https://doi.org/10.1016/j.physletb.2008.03.045.
- N. Seiberg, E. Witten, Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory, Nucl. Phys. B. 426 (1994) 19–52. https://doi.org/10.1016/0550-3213(94)90124-4.
- J.X. Madarász, G. Székely, M.P. Stannett, Does negative mass imply superluminal motion? An investigation in axiomatic relativity the-ory, (2018). http://www.collegepublications.co.uk/ifcolog/?00024 (accessed August 17, 2023).
- K. Benakli, S. Chapman, L. Darmé, Y. Oz, Superluminal graviton propagation, Phys. Rev. D. 94 (2016) 084026. https://doi.org/10.1103/PhysRevD.94.084026.
- M. Tajmar, F. Plesescu, K. Marhold, C.J. De Matos, Experimental Detection of the Gravitomagnetic London Moment, ArXiv Prepr. Gr-Qc/ …. (2006) 1–28. https://arxiv.org/abs/gr-qc/0603033v1 (accessed August 9, 2023).
- M. Takaaki, Superluminal Speed of Photons in the Electromagnetic Near-Field, Recent Adv. Photonics Opt. 2 (2019). https://doi.org/10.36959/665/320.
- G. Nimtz, Superluminal speed of information?, Nat. 2004 4296987. 429 (2004) 40–40. https://doi.org/10.1038/nature02586.
- V.A. Kostelecký, N. Russell, CPT and Lorentz tests in Penning traps, Phys. Rev. D. 57 (1998) 3932. https://doi.org/10.1103/PhysRevD.57.3932.
- G. Feinberg, Possibility of Faster-Than-Light Particles, Phys. Rev. 159 (1967) 1089. https://doi.org/10.1103/PhysRev.159.1089.
- Y. Song, H. Gao, Y. Chung Chang, al -, D. Kumar Sharma, S. Kumar, S. Auluck, G. Barton, K. Schamhorst, QED between parallel mir-rors: light signals faster than c, or amplified by the vacuum, J. Phys. A. Math. Gen. 26 (1993) 2037. https://doi.org/10.1088/0305-4470/26/8/024.
- L. Hollenstein, M. Jaccard, M. Maggiore, E. Mitsou, Zero-point quantum fluctuations in cosmology, Phys. Rev. D - Part. Fields, Gravit. Cosmol. 85 (2012) 124031. https://doi.org/10.1103/PhysRevD.85.124031.
- R.J. Adler, B. Casey, O.C. Jacob, Vacuum catastrophe: An elementary exposition of the cosmological constant problem, Am. J. Phys. 63 (1998) 620. https://doi.org/10.1119/1.17850.
- L. Lombriser, On the cosmological constant problem, Phys. Lett. B. 797 (2019) 134804. https://doi.org/10.1016/j.physletb.2019.134804.
- P.J.E. Peebles, B. Ratra, The cosmological constant and dark energy, Rev. Mod. Phys. 75 (2003) 559. https://doi.org/10.1103/RevModPhys.75.559.
- P.J. Stainhardt, N. Turok, Why the Cosmological Constant Is Small and Positive, Science (80-. ). 312 (2006) 1180–1183. https://doi.org/10.1126/science.1126231.
- S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1. https://doi.org/10.1103/RevModPhys.61.1.
- J.Ô. Martin, Everything you always wanted to know about the cosmological constant problem(but were afraid to ask), Comptes Rendus Phys. 13 (2012) 566–665. https://doi.org/10.1016/j.crhy.2012.04.008.
- D. Hilbert, Die Grundlagen der Physik . (Erste Mitteilung.), Nachrichten von Der Gesellschaft Der Wissenschaften Zu Göttingen, Math. Klasse. 1915. 395–408.
- N. Aghanim et. al, Planck 2018 results - VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6. https://doi.org/10.1051/0004-6361/201833910.
- J. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231–252. https://doi.org/10.4310/ATMP.1998.v2.n2.a1.
- J.X. Madarász, G. Székely, M.P. Stannett, Does negative mass imply superluminal motion? An investigation in axiomatic relativity the-ory, (2018). http://www.collegepublications.co.uk/ifcolog/?00024 (accessed August 17, 2023).
- G. Feinberg, Possibility of Faster-Than-Light Particles, Phys. Rev. 159 (1967) 1089. https://doi.org/10.1103/PhysRev.159.1089.
- Size of universe - Wolfram|Alpha, (n.d.). https://www.wolframalpha.com/input/?i=size+of+universe (accessed September 22, 2023).
- P.A. Zyla et al., Review of Particle Physics, Prog. Theor. Exp. Phys. 2020 (2020) 1–2093. https://doi.org/10.1093/ptep/ptaa104.
- V. Trimble, Existence and Nature of Dark Matter in the Universe, https://doi.org/10.1146/annurev.aa.25.090187.002233.
- G. Bertone, D. Hooper, History of dark matter, Rev. Mod. Phys. 90 (2018) 045002. https://doi.org/10.1103/RevModPhys.90.045002.
- D. Blas, M. M. Ivanov, S. Sibiryakov, Testing Lorentz invariance of dark matter, J. Cosmol. Astropart. Phys. 2012 (2012) 057. https://doi.org/10.1088/1475-7516/2012/10/057.
- B. Ratra, P.J.E. Peebles, Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev. D. 37 (1988) 3406. https://doi.org/10.1103/PhysRevD.37.3406.
- J.S. Farnes, A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified ΛCDM frame-work, Astron. Astrophys. 620 (2018) A92. https://doi.org/10.1051/0004-6361/201832898.
- C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, W. H. Freeman, San Francisco, 1973.
- G. Smith, J. Forshaw, Dynamics and relativity, Wiley, 2014.
- P. Guynn, Thomas Precession is the Basis for the Structure of Matter and Space, (2018). https://hal.science/hal-02628032 (accessed February 8, 2023).
- G.F. Smoot, Physics 139 Relativity Thomas Precession, (1998). https://aether.lbl.gov/www/classes/p139/homework/seven.pdf (ac-cessed September 25, 2023). Web Archive: https://web.archive.org/web/20230925084048/https://aether.lbl.gov/www/classes/p139/homework/seven.pdf.
- J.D. Bekenstein, Black Holes and Entropy, Phys. Rev. D. 7 (1973) 2333. See also inlcuded information in this link https://qr.ae/py3PRb, (accessed August 27, 2023). https://doi.org/10.1103/PhysRevD.7.2333.
- G. Aad et al. (ATLAS Collaboration), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B. 716 (2012) 1–29. https://doi.org/10.1016/j.physletb.2012.08.020.
- D.P. Aguillard et al., Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm, Phys. Rev. Lett. 131 (2023) 161802. https://doi.org/10.1103/PhysRevLett.131.161802.
- E.N. Markoulakis, The superluminous vacuum, Int. J. Phys. Res. 11 (2023) 18–25. https://doi.org/10.14419/ijpr.v11i1.32269.
- H.E.S. Velten, R.F. vom Marttens, W. Zimdahl, Aspects of the cosmological “coincidence problem,” Eur. Phys. J. C 2014 7411. 74 (2014) 1–8. https://doi.org/10.1140/epjc/s10052-014-3160-4.
- E. Witten, Instability of the Kaluza-Klein vacuum, Nucl. Phys. B. 195 (1982) 481–492. https://doi.org/10.1016/0550-3213(82)90007-4.
-
Downloads
-
How to Cite
Markoulakis, E. N. (2024). Superluminal graviton condensate vacuum. International Journal of Physical Research, 12(2), 45-61. https://doi.org/10.14419/bmr9g725