Equivalence of magnetic flux and energy
-
2024-09-16 https://doi.org/10.14419/cz021356 -
Axiom; Astrophysical Parameter; Energy; Equivalence; Magnetic Flux; Schwarzschild Radius; Tensor; Physical Units; Physical Constants. -
Abstract
Magnetic flux and energy equivalence is the principle that everything that has magnetic flux has an equivalent amount of energy, and vice versa.
The main methods used: transformation of natural units, algebra, analogy.
The equivalence of magnetic flux and energy, despite its widespread use in describing the principles of physics, has not yet been formulated. This paper presents the formula for this equivalence. This is done based on known measurement systems, parameters and principles of physics.
Five examples (Stoney units, Planck units, standard gravitational parameter, Lorentz force, and Ampere force) of the algebraic representation of this principle show its universality. Five examples should justify the universality of the new principle and its use in physics and astrophysics.
Using the equivalence of magnetic flux and energy, new physical units of mass and magnetic flux are proposed, each of which is suitable for measuring both mass and magnetic flux. Natural values of electric current and voltage, linear density of electric capacitance and inductance, linear density of magnetic flux, linear density of electric charge, as well as natural units of electric voltage and current, electrical resistance, magnetic flux, electrical capacitance and inductance are also described.
The article presents the Einstein field equation (additional magnetic stress–energy–momentum tensor) and a standard astrophysical parameter for refining the orbits of celestial bodies.
-
References
- Maxwell, J. C. (1861). On physical lines of force. Philosophical Magazine. 90 (139): 11–23. URL: https://doi.org/10.1080/14786446108643033.
- J. J. Thomson (1881). On the electric and magnetic effects produced by the motion ofelectrified bodies. Philosophical Magazine. Vol. 11. P. 229–249. https://doi.org/10.1080/14786448108627008 and URL: https://ia800708.us.archive.org/view_archive.php?archive=/22/items/crossref-pre-1909-scholarly-works/10.1080%252F14786448108626989.zip&file=10.1080%252F14786448108627008.pdf
- G. Stoney (1881). On The Physical Units of Nature. Phil. Mag. 11, S. 381–391. https://doi.org/10.1080/14786448108627031.
- M. Planck (1900). Über irreversible Strahlungsvorgänge. Ann. Phys. 4(1). P. 69–122. https://doi.org/10.1002/andp.19003060105.
- P. Duhem (1886). Sur la loi d'Ampère. J. Phys. Theor. Appl. Volume 5, Numéro 1, P. 26 - 29. URL: https://doi.org/10.1051/jphystap:01886005002601.
- Duhem, Pierre Maurice Marie (2018). Ampère's Force Law: A Modern Introduction. Alan Aversa. Retrieved 3 July 2019. (EPUB).
- Whittaker E. T. (1910). A History of the Theories of Aether and Electricity: From the Age of Descartes to the Close of the Nineteenth Century. Longmans, Green and Co. P. 420–423. ISBN: 1-143-01208-9. URL: https://ia804708.us.archive.org/32/items/historyoftheorie00whitrich/historyoftheorie00whitrich.pdf. https://doi.org/10.5962/bhl.title.19630.
- Lorentz, Hendrik Antoon (1895). Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern. LEIDEN. − E. J. BRILL. URL: https://books.google.co.uk/books?id=eZHOAAAAMAAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false (German).
- Суханов В. Н. (2003). Изобретательское творчество. Природа физических величин иявлений. “4. Природа магнитного поля”. Казань: ФолиантЪ. ISBN: 5949900022. (Russian): https://www.researchgate.net/publication/361799177_Priroda_Fiziceskih_Velicin_i_Avlenij_Cast_11 и URL: https://www.worldcat.org/title/izobretatelskoe-tvorchestvo/oclc/55576505.
- Vladimir Nikolayevich Sukhanov (2024). Space−time−energy equivalence. International Journal of Physical Research, 12(1):10-23. URL: https://www.sciencepubco.com/index.php/IJPR/article/view/32527/17817. https://doi.org/10.14419/n7tgaw97.
- Gauss, Carl Friedrich; Davis, Charles Henry (1857). Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sec-tions. Boston: Little, Brown and Company. p. 2. URL: https://archive.org/details/bub_gb_1TIAAAAAQAAJ. https://doi.org/10.5962/bhl.title.19023.
- Newton (1687). Philosophiæ Naturalis Principia. De Motu Corporum. London URL: https://www.newtonproject.ox.ac.uk/view/texts/normalized/NATP00078.
- Vladimir Nikolayevich Sukhanov (2024). Equivalence of electric charge and energy. International Journal of Physical Research. https://doi.org/10.14419/bhmxn335.
- Schwarzschild, Karl (1916). Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Kö-niglich Preußischen Akademie der Wissenschaften (Berlin), Seite 189-196. (German) URL: https://articles.adsabs.harvard.edu/pdf/1916SPAW.189S.
- Karl Schwarzschild (1916). Über das Gravitationsfeld einer Kugel aus inkompressibler Flussigkeit nach der Einsteinschen Theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik. P. 424. URL: https://ui.adsabs.harvard.edu/abs/1916skpa.conf..424S/abstract , URL: https://www.jp-petit.org/Schwarzschild-1916-interior-de.pdf.
- Albert Einstein (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik 17: 891. (German) URL: https://doi.org/10.1002/andp.19053221004 URL: https://www.fourmilab.ch/etexts/einstein/specrel/www/.
- Ohm, Georg Simon (1827). Die galvanische Kette. Mathematisch bearbeitet. Berlin: T. H. Riemann. (German). https://doi.org/10.5479/sil.354716.39088005838644.
- Lorenz, L. (1879). Ueber die Fortpflanzung der Electricität. Annalen der Physik, vol. 243, Issue 6, pp. 161-193. https://doi.org/10.1002/andp.18792430602.
- Maxwell, J. C. (1878). On the electrical capacity of a long narrow cylinder and of a disk of sensible thickness. Proceedings of the Lon-don Mathematical Society. Vol. IX. P. 94—101. https://doi.org/10.1112/plms/s1-9.1.94.
- Vladimir Nikolayevich Sukhanov (2020). Equivalence of magnetic flux and energy. ResearchGate.
-
Downloads
-
How to Cite
Nikolayevich Sukhanov , V. (2024). Equivalence of magnetic flux and energy. International Journal of Physical Research, 12(2), 74-89. https://doi.org/10.14419/cz021356