Inhomogeneous cosmology with quasi-vacuum effective equation of state on Lyra manifold

  • Authors

    • Victor Shchigolev Department of Theoretical Physics, Ulyanovsk State University
    2016-03-13
    https://doi.org/10.14419/ijpr.v4i1.5902
  • Cosmology, Lemaître-Tolman metrics, Lyra geometry
  • Abstract

    A class of inhomogeneous Lemaître-Tolman cosmological models is obtained in the context of Lyra’s geometry. Cosmological models in Lyra’s geometry are studied under the condition of the minimal coupling of matter with the displacement vector field and the varying Λ term. Exact solutions to the model equations are obtained subject to the quasi-vacuum effective equation of state. As a result, the displacement field as well as the cosmological term can be expressed in terms of the energy density of matter. The rate of expansion and the deceleration parameter of the model are also studied

  • References

    1. [1] A. G. Riess , et al. , â€Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constantâ€, Astronomical Journal, Vol. 116 (1998), 1009. http://dx.doi.org/10.1086/300499

      [2] S. Perlmutter, et al., â€Measurements of Omega and Lambda from 42 High-Redshift Supernovaeâ€, Astrophysical Journal, Vol. 517 (1999), 565. http://dx.doi.org/10.1086/307221

      [3] N. Jarosik, C.L. Bennett, et al., â€Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Resultsâ€, Astrophysical Journal Supplement Series, 192 (2011), 14. http://dx.doi.org/10.1088/0067-0049/192/2/14.

      [4] S. F. Daniel, R. R. Caldwell, A. Cooray and A. Melchiorri, â€Large scale structure as a probe of gravitational slipâ€, Physical Review D 77 (2008), 103513. http://dx.doi.org/10.1103/PhysRevD.77.103513

      [5] R. R. Caldwell, W. Komp, L. Parker and D. A. T. Vanzella, â€Sudden gravitational transitionâ€, Physical Review D 73 (2006), 023513. http://dx.doi.org/10.1103/PhysRevD.73.023513

      [6] H. Brans, and R. H. Dicke, â€March’s Principle and a Relativistic Theory of Gravitationâ€, Physical Review A 124 (1961), 925-935. http://dx.doi.org/10.1103/PhysRev.124.925

      [7] G. Lyra, â€U¨ ber eine modifikation der riemannschen geometrieâ€, Mathematische Zeitschrift 54 (1951), 52-64. http://dx.doi.org/10.1007/BF01175135

      [8] K. Nordtvedt Jr., â€Post-Newtonian Metric for a General Class of Scalar-Tensor Gravitational Theories and Observational Consequences, The Astrophysical Journal 161 (1970), 1059-1067.

      http://dx.doi.org/10.1086/150607

      [9] D. Saez and V.J. Ballester, â€A Simple Coupling with Cosmological Implicationsâ€, Physical Letters A 113 (1986), 467-470. http://dx.doi.org/10.1016/0375-9601(86)90121-0

      [10] G.A. Barber, â€On Two â€Self-Creation†Cosmologiesâ€, General Relativity and Gravitation 14 (1982), 117- 136.http://dx.doi.org/10.1007/s10509-007-9387-x

      [11] D. K. Sen and K. A. Dunn, â€A Scalar-Tensor Theory of Gravitation in a Modified Riemannian Manifoldâ€, Journal of Mathematical Physics 12 (1971), 578. http://dx.doi.org/10.1063/1.1665623

      [12] W. D. Halford, â€Scalar-tensor theory of gravitation in a Lyra manifoldâ€, Journal of Mathematical Physics 13 (1972), 1699-1703. http://dx.doi.org/10.1063/1.1665894

      [13] H. H. Soleng, â€Cosmologies based on Lyra’s geometry,†General Relativity and Gravitation 19 (1987), 1213-1216. http://dx.doi.org/10.1007/BF00759100

      [14] V. K. Shchigolev, â€Cosmology with an Effective L-term in lyra manifoldâ€, Chinese Physics Letters 30 (2013), 119801. doi:10.1088/0256-307X/30/11/119801

      [15] Hoavo Hova, â€A Dark Energy Model in Lyra Manifoldâ€, Journal of Geometry and Physics 64 (2013), 146-154. http://dx.doi.org/10.1016/j.geomphys.2012.08.004

      [16] Haizhao Zhi, Mengjiao Shi, Xinhe Meng, Lianzhong Zhang, â€A new global 1-form in Lyra geometric cosmos modelâ€, International Journal of Theoretical Physics, Vol.53, Issue 11, (2014), pp 4002-4011. http://dx.doi.org/10.1007/s10773-014-2151-4

      [17] M. Khurshudyan, J. Sadeghi, R. Myrzakulov, A. Pasqua, H. Farahani, â€Interacting quintessence dark energy models in Lyra manifoldâ€, Advances in High Energy Physics 2014 (2014), 878092.

      http://dx.doi.org/10.1155/2014/878092

      [18] V. K. Shchigolev, E. A. Semenova, â€Scalar field cosmology in Lyra’s geometryâ€, International Journal of Advanced Astronomy, Vol. 3, No. 2 (2015), 117-122. http://dx.doi.org/10.14419/ijaa.v3i2.5401

      [19] M. Khurshudyan, â€Interacting extended Chaplygin gas cosmology in Lyra manifoldâ€, Astrophys and Space Science 360 (2015), 44. http://dx.doi.org/10.1007/s10509-015-2557-3

      [20] M. Khurshudyan, A. Pasqua, J. Sadeghi, H. Farahani, â€Quintessence Cosmology with an Effective L-Term in Lyra Manifoldâ€, Chinese Physics Letters 32(2015) 109501. http://dx.doi.org/10.1088/0256-307X/32/10/109501

      [21] M. Khurshudyan, Toy Models of Universe with an Effective Varying L-Term in Lyra Manifold, Advances in High Energy Physics Vol.2015, Article ID 796168, 10 pages. http://dx.doi.org/10.1155/2015/796168

      [22] M. Khurshudyan, J. Sadeghi, A. Pasqua, S. Chattopadhyay, R. Myrzakulov, H. Farahani, â€Interacting Ricci dark energy models with an effective L-term in Lyra manifoldâ€, International Journal of Theoretical Physics 54 (2015), 749. http://dx.doi.org/10.1007/s10773-014-2266-7

      [23] G. Lemaître, â€L’univers en expansionâ€, Ann. Soc. Sci. Bruxelles A53(1933) 51 ; reproduced as a Golden Oldie and translated by M. A. H. MacCallum, General Relativity and Gravitation 29(5) (1997), 641. http://dx.doi.org/10.1023/A:1018855621348

      [24] R.C. Tolman, Effect of Inhomogeneity on Cosmological Modelsâ€, Proceedings of the National Academy of Sciences 20 (1934), 169. http://www.pnas.org/content/20/3/169.full.pdf

      [25] A. Krasinski, Inhomogeneous Cosmological Models, Cambridge University Press, Cambridge, (1997).

      [26] Antonio Zeccaa, â€Lemaˆıtre-Tolman-Bondi model: Solutions of the cosmological equationâ€, European Physical Journal Plus 128 (2013), 107. http://dx.doi.org/10.1140/epjp/i2013-13107-0

      [27] Chia-Hsun Chuang, Je-An Gu and W-Y P Hwang, â€Inhomogeneity induced cosmic acceleration in a dust universeâ€, Classical and Quantum Gravity 25 (2008), 175001. http://dx.doi.org/10.1088/0264-9381/25/17/175001

      [28] J. W. Moffat, â€Late-time inhomogeneity and acceleration without dark energyâ€, Journal of Cosmology and Astroparticle Physics 05 (2006), 001.

      http://dx.doi.org/10.1088/1475-7516/2006/05/001

      [29] V. K. Shchigolev, Exact inhomogeneous models of cosmological inflationâ€, Russian Physics Journal, Vol.41, Issue 2 (1998), 89-92. http://dx.doi.org/10.1007/BF02766550

      [30] D. Panigrahi and S. Chatterjee, â€Spherically symmetric inhomogeneous model with Chaplygin gasâ€, arXiv:1108.2433v2 [gr-qc]

  • Downloads

  • How to Cite

    Shchigolev, V. (2016). Inhomogeneous cosmology with quasi-vacuum effective equation of state on Lyra manifold. International Journal of Physical Research, 4(1), 15-19. https://doi.org/10.14419/ijpr.v4i1.5902

    Received date: 2016-02-18

    Accepted date: 2016-03-13

    Published date: 2016-03-13