Modified expression for calculating refractive index of ANB8-N type binary semiconductors
-
2016-07-19 https://doi.org/10.14419/ijpr.v4i2.6291 -
Refractive Index, Electronegativity Difference, ANB 8-N Type Binary Semiconductors. -
Abstract
In their recent work, Bahadur and Mishra proposed a new simple formula between the high-frequency refractive index and optical elec-tronegativity difference, which has been established for large number of ANB8-N type binary semiconductors (groups: I-VII, II-VI, III-V and IV-VI.). In the present work, we have improved their expression by addition a correction term in their proposed formula. The minimum average percentage deviation in the present approach reveals that the modified Bahadur relation proves its identity and soundness compared to that of Bahadur’s and others authors' relations.
-
References
[1] T.S. Moss, A Relationship between the Refractive Index and the Infra-Red Threshold of Sensitivity for Photoconductors, Proceedings of the Physical Society. Section B, Vol.63, No.3, (1950) pp. 167-176. http://dx.doi.org/10.1088/0370-1301/63/3/302
[2] T.S. Moss, Relations between the Refractive Index and Energy Gap of Semiconductors, Physical Status Solidi B, Vol.131, No.2, (1985) pp.415-427. http://onlinelibrary.wiley.com/doi/10.1002/pssb.2221310202/abstract. http://dx.doi.org/10.1002/pssb.2221310202.
[3] N.M. Ravindra & V.K. Srivastava, Variation of refractive index with energy gap in semiconductors, Infrared Physics. Vol.19, No.5, (1979) pp.603-604. http://dx.doi.org/10.1016/0020-0891(79)90081-2.
[4] V.P. Gupta & N.M. Ravindra, Comments on the Moss Formula, Physical Status Solidi B, Vol.100, No.2, (1980) pp. 715-719. http://dx.doi.org/10.1002/pssb.2221000240.
[5] P. Herve & L.K.J. Vandamme, General relation between refractive index and energy gap in semiconductors, Infrared Physics & Technology. Vol.35, No.4, (1994) pp. 609-615. http://dx.doi.org/10.1016/1350-4495(94)90026-4.
[6] R. R. Reddy &Y. Nazeer Ahammed, A study on the Moss relation, Infrared Physics & Technology. Vol.36, No.5, (1995) pp. 825-830. http://dx.doi.org/10.1016/1350-4495(95)00008-M.
[7] R.P. Singh, P. Singh & K.K. Sarkar, Correlation between the refractive index and the energy gap of simple and complex binary compounds-II, Infrared Physics. Vol.26, No.3, (1986) pp. 167 169-. http://dx.doi.org/10.1016/0020-0891(86)90019-9.
[8] R.P. Singh, P.P. Singh & K.K. Sarkar, "Correlation between the refractive index and the energy gap of simple and complex binary compounds", Infrared Physics. 26, No.1, (1986) pp. 1-3. http://dx.doi.org/10.1016/0020-0891(86)90039-4.
[9] M. Anani, C. Mathieu, S. Lebid, Y. Amar, Z. Chama & H. Abid, Model for calculating the refractive index of a III-V semiconductor, Computational Materials Science, Vol.41, No.4, (2008), pp. 570-575. http://dx.doi.org/10.1016/j.commatsci.2007.05.023.
[10] V. Kumar & J. K. Singh, Model for calculating the refractive index of different materials, Indian Journal of Pure and Applied Physics, Vol.48, (2010), pp. 571-574. http://www.nusod.org/piprek/guden96msmse.pdf.
[11] A. Bahadur & M. Mishra, " Correlation Between Refractive Index and Electronegativity Difference for ANB8-N Type Binary Semiconductors", Acta Physica Polonica A, Vol.123, No.4, (2013) pp. 737-740. http://dx.doi.org/10.12693/APhysPolA.123.737.
[12] M. A. Salem, The dependence of the high frequency refractive index on the electronegativities in compound semiconductors, Chinese Journal of Physics. Vol.41, No.3, (2003) pp. 288-295.
[13] B. P. Singh, S. Tripti & V. Singh, "Analysis of optoelectronic properties of ANB8-N type binary solids", Indian Journal of Pure and Applied Physics, Vol.46, No.7, (2008) pp. 502-506.
[14] R.R. Reddy, K. Rama Gopal, K. Narasimhulu, L. Siva Sankara Reddy, K. Raghavedra Kumar, C.V. Krishna Reddy, S.N. Ahmed, Correlation between optical electronegativity and refractive index of ternary chalcopyrites, semiconductors, insulators, oxides and alkali halides, Optical Materials. Vol.31, No.2, (2008) pp. 209-212. http://dx.doi.org/10.1016/j.optmat.2008.03.010.
[15] J. A. Duffy, Trends in energy gaps of binary compounds: an approach based upon electron transfer parameters from optical spectroscopy, Journal of Physics C: Solid State Physics, Vol.13, No.16, (1980) pp. 2979-2989. http://dx.doi.org/10.1088/0022-3719/13/16/008.
[16] J.A. Duffy, Bonding Energy Levels and Bonds in Inorganic Solids, Longman Scientific & Technical, England (1990). ISBN 0470215674, 9780470215678.
[17] V. Gopal, Energy gap-refractive index interrelation, Infrared Physics. Vol.22, No.5, (1982) pp. 255-257. http://dx.doi.org/10.1016/0020-0891(82)90052-5.
[18] J. I. Gersten and F. W. Smith, The physics and chemistry of materials, New York, John Wiley & Sons, INC, (2001). ISBN 10: 0471057940, ISBN 13: 9780471057949
[19] A.K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectric Press, London (1983). ISBN 0095087109, 9780095087100
-
Downloads
-
How to Cite
Latreche, A., & Daoud, S. (2016). Modified expression for calculating refractive index of ANB8-N type binary semiconductors. International Journal of Physical Research, 4(2), 48-51. https://doi.org/10.14419/ijpr.v4i2.6291Received date: 2016-05-22
Accepted date: 2016-07-09
Published date: 2016-07-19