Sound velocities and Debye temperature of BeSe under high pressure up to 50 GPa

  • Authors

    • Salah Daoud Laboratory of Materials and Electronic Systems (LMSE), Faculty of Sciences and Technology, Mohamed Elbachir El Ibrahimi, Bordj Bou Arreridj University, Bordj Bou Arreridj (34000), Algeria
    2016-12-25
    https://doi.org/10.14419/ijpr.v5i1.7013
  • Elastic Wave Velocity, Thermal Properties, Beryllium-Selenide (Bese) Material.
  • The mechanical behavior, sound velocities and Debye temperature of beryllium-selenide (BeSe) semiconductor under pressure up to 50 GPa have been estimated using the structural parameters and elastic constants of Fanjie Kong and Gang Jiang (Physica B 404 (2009) 3935-3940). The Pugh ratio, the directional dependence of elastic wave velocity, the longitudinal, transverse and average sound velocities, and the Debye temperature are successfully predicted and analyzed in comparison with the available theoretical data. The analysis of the Pugh ratio indicates that this compound is prone to brittle behavior. Our obtained results of the longitudinal, transverse and average sound velocities at high pressure indicate that these of Kong and Jiang (Physica B 404 (2009) 3935-3940) are not correctly predicted.

  • References

    1. [1] R. Khenata, A. Bouhemadou, M. Hichour, H. Baltache, D. Rached, M. Rérat, "Elastic and optical properties of BeS, BeSe and BeTe under pressure", Solid-State Electronics, Vol.2, No. 7-8, (2006), pp. 1382-1388. http://dx.doi.org/10.1016/j.sse.2006.06.019

      [2] X. Ji, Y. Yu, J. Ji, J. Long, J. Chen, D. Liu, "Theoretical studies of the pressure-induced phase transition and elastic properties of BeS", Journal of Alloys and Compounds, Vol.623, (2015), pp. 304 - 310. http://dx.doi.org/10.1016/j.jallcom.2014.10.151.

      [3] F. El Haj Hassan, H. Akbarzadeh, "Ground state properties and structural phase transition of beryllium chalcogenides", Computational Materials Science, Vol. 35, No. 4, (2006), pp. 423-431. http://dx.doi.org/10.1016/j.commatsci.2005.02.010.

      [4] D. P. Rai, M. P. Ghimire, R.K. Thapa, "A DFT Study of BeX (X = S, Se, Te) semiconductor: modified Becke Johnson (mBJ) Potential", Semiconductors, Vol. 48, No. 11, (2014), pp. 1447-1422. https://doi.org/10.1134/S1063782614110244.

      [5] F. Kong, G. Jiang, "Phase transition, elastic, thermodynamic properties of zinc-blend BeSe from first-principles", Physica B, Vol. 404, (2009), pp. 3935-3940.

      [6] R. P. Singh, R.K. Singh, "Temperature dependent physical effects of ultrasonic wave in beryllium chalcogenides", Applied Acoustics Vol. 71, No. 4, (2010), pp. 328-334.

      [7] S. Dabhi, V. Mankad, Prafulla K. Jha, "A First principles study of phase stability, bonding, electronic and lattice dynamical properties of beryllium chalcogenides at high pressure", Journal of Alloys and Compounds, Vol. 617, (2014), pp. 3905 - 914. https://doi.org/10.1016/j.jallcom.2014.08.035.

      [8] S. Laref, A. Laref, "Thermal properties of BeX (X = S, Se and Te) compounds from ab initio quasi-harmonic method", Computational Materials Science, Vol. 51, No. 1, (2012), pp. 135-140. https://doi.org/10.1016/j.commatsci.2011.07.016.

      [9] S. Narain, "Analysis of the Debye temperature for ANB8–N type ionic and partially covalent crystals", Physica Status Solidi B, Vol. 182, No. 2, (1994), pp. 273-278.

      [10] V. Kumar, V. Jha, A. K. Shrivastava, "Debye temperature and melting point of II-VI and III-V semiconductors", Crystal Research and Technology, Vol. 45, No. 9, (2010), pp. 920-924. https://doi.org/10.1002/crat.201000268.

      [11] D. Heciri, L. Beldi, S. Drablia, H. Meradji, N.E. Derradji, H. Belkhir, B. Bouhafs, " First-principles elastic constants and electronic structure of beryllium chalcogenides BeS, BeSe and BeTe", Computational Materials Science, Vol. 38, No. 4, (2007), pp. 609-617. https://doi.org/10.1016/j.commatsci.2006.04.003.

      [12] S. Daoud,"Sound velocities and thermal properties of BeX (X=S, Se and Te) alkaline-earth chalcogenides", International Journal of Scientific World, Vol. 5, No.1, (2017), pp. 9-12. https://doi.org/10.14419/ijsw.v5i1.6929.

      [13] Kh. Bouamama, K. Daoud, K. Kassali, "Ab initio calculations in the virtual-crystal approximation of the structural and the elastic properties of BeSxSe1−x alloys under high pressure", Modeling and Simulation in Materials Science and Engineering, Vol.13, (2005), pp. 1153 - 1162. https://doi.org/10.1088/0965-0393/13/7/010.

      [14] S. Daoud,"Sound velocities and thermal properties of BX (X=As, Sb) compounds", International Journal of Scientific World, Vol. 3, No. 1, (2015), pp. 43-48. https://doi.org/10.14419/ijsw.v3i1.4039.

      [15] S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors, John Wiley & Sons, England, (2005). ISBN 0-470-09032-4. https://doi.org/10.1002/0470090340.

      [16] S. F. Pugh, "Relations between the elastic moduli and the plastic properties of polycrystalline pure metals", Philosophical Magazine Vol. 45, No. 367, (1954), pp. 823-843.

      [17] D. B. Sirdeshmukh, L. Sirdeshmukh, K. G. Subhadra, Micro-and Macro-Properties of Solids, Springer-Verlag Berlin Heidelberg, (2006), pages 25, 26.

      [18] N. Paliwal, V. Srivastava, A. K. Srivastava, "Electronic Band Structure and Heat Capacity Calculation of Some TlX (X = Sb, Bi) Compounds", Advances in Materials Physics and Chemistry, Vol. 6, No.3, (2016), pp. 47-53.

      http://dx.doi.org/10.4236/ampc.2016. 63005.

      [19] M. A. Blanco, E. Francisco, V. Luaña, Gibbs: "Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model", Computer Physics Communications, Vol. 158, No.1, (2004), 57-72.

      http://dx.doi.org/10.1016/j.comphy. 2003.12.001

      [20] S. Daoud,"Simplified expressions for calculating Debye temperature and melting point of II-VI and III-V semiconductors", International Journal of Scientific World, Vol. 3, No.2, (2015), pp. 275-279. https://doi.org/10.14419/ijsw.v3i2.5314.

  • Downloads

  • How to Cite

    Daoud, S. (2016). Sound velocities and Debye temperature of BeSe under high pressure up to 50 GPa. International Journal of Physical Research, 5(1), 7-10. https://doi.org/10.14419/ijpr.v5i1.7013