Fundamental physics and the fine-structure constant
-
2017-08-17 https://doi.org/10.14419/ijpr.v5i2.8084 -
Euler’s Equation, Fine-Structure Constant, Forces of Nature, Fundamental Constants, Symmetry Principles. -
Abstract
From the exponential function of Euler’s equation to the geometry of a fundamental form, a calculation of the fine-structure constant and its relationship to the proton-electron mass ratio is given. Equations are found for the fundamental constants of the four forces of nature: electromagnetism, the weak force, the strong force and the force of gravitation. Symmetry principles are then associated with traditional physical measures.
-
References
[1] L. Debnath, The Legacy of Leonhard Euler: A Tricentennial Tribute, Imperial College Press, London, World Scientific Publishing, River Edge, NJ, (2009) p.180. https://doi.org/10.1142/p698.
[2] W. Eisen, The Essence of the Cabalah, DeVorss, Marina Del Rey, CA, 1984, pp.474-479.
[3] M.A. Sherbon, Quintessential nature of the fine-structure constant, Global Journal of Science Frontier Research A, 15, 4 (2015) 23-26.
[4] R.R. Nair, et al, Fine structure constant defines visual transparency of graphene, Science, 320, 5881 (2008) 1308-1308. https://doi.org/10.1126/science.1156965.
[5] Z. Zi-Xiang, An observation of relationship between the fine structure constant and the Gibbs phenomenon in Fourier analysis, Chinese Physics Letters, 21.2 (2004) 237-238. https://doi.org/10.1088/0256-307X/21/2/006.
[6] T. Aoyama, M. Hayakawa, T. Kinoshita, & M. Nio, Tenth-order electron anomalous magnetic moment: contribution of diagrams without closed lepton loops, Physical Review D, 91, 3 (2015) 033006.
[7] M.A. Sherbon, Fundamental nature of the fine-structure constant, International Journal of Physical Research, 2, 1 (2014) 1-9. https://doi.org/10.14419/ijpr.v2i1.1817.
[8] C.B. Hills, Supersensonics, University of the Trees, Boulder Creek, CA, 1978, p.120.
[9] G. Rosi, et al, Precision measurement of the Newtonian gravitational constant using cold atoms, Nature, 510.7506 (2014) 518-521. https://doi.org/10.1038/nature13433.
[10] A.S. Burrows & J.P. Ostriker, Astronomical reach of fundamental physics, PNAS, 111, 7 (2014) 2409-2416. https://doi.org/10.1073/pnas.1318003111.
[11] D. d’Enterria, P.Z. Skands, S. Alekhin, et al, High-precision αS measurements from LHC to FCC-ee, CERN-PH-TH (2015) 299.
[12] A. Bodek, Precision measurements of electroweak parameters with Z bosons at the Tevatron, The European Physical JournalC, 76, 3 (2016) 1-12. In Proceedings of the Third LHCP15, 2015. Saint Petersburg, Russia.
[13] M. Thomson, Modern Particle Physics, Cambridge University Press, Cambridge, UK, 2013, 298.
[14] K.A. Olive, et al, (Particle Data Group) The review of particle physics, Chinese Physics C, 38 (2014) & update (2015) 090001.
[15] K. Sundermeyer, Symmetries in Fundamental Physics, Springer, New York, 2014. https://doi.org/10.1007/978-94-007-7642-5.
[16] S.P. Sirag, ADEX Theory: How the ADE Coxeter Graphs Unify Mathematics and Physics, World Scientific Publishing, River Edge, NJ, 2016, pp.2-4. https://doi.org/10.1142/9502.
[17] K.P. Jungmann, Fundamental symmetries and interactions, Nuclear Physics A, 751 (2005) 87. https://doi.org/10.1016/j.nuclphysa.2005.02.099.
[18] C. Quigg, Electroweak symmetry breaking in historical perspective, Annual Review of Nuclear and Particle Science, 65, 1 (2015) 25-42. https://doi.org/10.1146/annurev-nucl-102313-025537.
[19] T. Gannon, Moonshine beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics, Cambridge University Press, Cambridge, UK, 2006. https://doi.org/10.1017/CBO9780511535116.
[20] J.F.R. Duncan, M.J. Griffin & K. Ono, Moonshine, Research in the Mathematical Sciences, 2 (2015) 11. https://doi.org/10.1186/s40687-015-0029-6.
[21] N.J.A. Sloane, Coefficients of modular function j as power series in q, The On-Line Encyclopedia of Integer Sequences, (2001) OEIS:A000521.
[22] D. Grumiller, R. McNees, & J. Salzer, Black holes and thermodynamics, Quantum Aspects of Black Holes, Springer, New York, 2015, pp.27-70.
[23] G.W. Adamson, Convolution square root of A000521, The On-Line Encyclopedia of Integer Sequences, (2009) OEIS:A161361.
[24] T. Eguchi, H. Ooguri & Y. Tachikawa, Notes on the K3 surface and the Mathieu group M24, Experimental Mathematics, 20, 1 (2011) 91-96. https://doi.org/10.1080/10586458.2011.544585.
[25] P.P. Dechant, Clifford algebra is the natural framework for root systems and Coxeter groups. Group theory: Coxeter, conformal and modular groups, Advances in Applied Clifford Algebras, (2015) 1-15.
[26] H.F. Verheyen, The icosahedral design of the great pyramid, Fivefold Symmetry, World Scientific Publishing, River Edge, NJ, 1992, pp.333-360. https://doi.org/10.1142/9789814439497_0020.
[27] J. Michell, the New View over Atlantis, Thames & Hudson, New York, 1995, p.149.
[28] M.A. Sherbon, Wolfgang Pauli and the fine-structure constant, Journal of Science, 2, 3 (2012) 148-154.
[29] R.G. Newton, Galileo’s Pendulum: From the Rhythm of Time to the Making of Matter, Harvard University Press, Cambridge, MA, 2004, p.137. https://doi.org/10.4159/9780674041486.
[30] F. Petrie, Origin of the time pendulum, Nature, 132, 3324 (1933) 102.
[31] J. Maldacena, The symmetry and simplicity of the laws of physics and the Higgs boson, European Journal of Physics, 37, 1, 12 (2015) 015802.
-
Downloads
-
How to Cite
Sherbon, M. (2017). Fundamental physics and the fine-structure constant. International Journal of Physical Research, 5(2), 46-48. https://doi.org/10.14419/ijpr.v5i2.8084Received date: 2017-07-05
Accepted date: 2017-08-07
Published date: 2017-08-17