To fit Fermi’s weak coupling constant with three gravitational constants
-
2017-12-28 https://doi.org/10.14419/ijpr.v6i1.8781 -
Final Unification, Fermi’s Weak Coupling Constant, Newtonian Gravitational Constant, Virtual Electromagnetic Gravitational Constant, Virtual Nuclear Gravitational Constant. -
Abstract
By considering three virtual gravitational constants assumed to be associated with gravitational, electromagnetic and strong interactions, Fermi’s weak coupling constant can be shown to be a natural manifestation of microscopic quantum gravity. As our approach is heuristic and completely different from the current methods of estimating the Newtonian gravitational constant, concerning the call of ‘Ideas lab 2016’ organized by NSF, we appeal for inclusion of this theoretical work as a project under the unification scheme. Estimated magnitudes of Fermi’s weak coupling constant and Newtonian gravitational constant are 1.44021X10(-62) J.m3 and 6.679856X10(-11) m3/kg/sec2 respectively.
-
References
[1] U. V. S. Seshavatharam and S. Lakshminarayana. Towards a workable model of final unification. International Journal of Mathematics and Physics Vol. 7, No. 1, 117 (2016). Al-Farabi Kazakh National University.
[2] C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update.
[3] Roberto Onofrio. On Weak Interactions as Short- Distance Manifestations of Gravity. Modern Physics Letters A, Vol. 28, No. 7, 1350022 (2013). https://doi.org/10.1142/S0217732313500223.
[4] G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli and G. M. Tino1. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518-521. (2014). https://doi.org/10.1038/nature13433.
[5] S. Schlamminger and R.D. Newman. Recent measurements of the gravitational constant as a function of time. Phys. Rev. D 91, 121101 (2015). https://doi.org/10.1103/PhysRevD.91.121101.
[6] Ideas Lab: Measuring “Big G†Challenge. https://www.nsf.gov/pubs/2015/nsf15591/nsf15591.htm.
[7] K. Becker, M. Becker and J. H. Schwarz. String Theory and M-theory: A Modern Introduction. Cambridge University Press, (2006). https://doi.org/10.1017/CBO9780511816086.
[8] Salam A, Sivaram C. Strong Gravity Approach to QCD and Confinement. Mod. Phys. Lett., v. A8 (4), 321–326. (1993). https://doi.org/10.1142/S0217732393000325.
[9] O. F. Akinto, Farida Tahir. Strong Gravity Approach to QCD and General Relativity. ArXiv: 1606.06963v3.
[10] N. Chamel et al. On the Maximum Mass of Neutron Stars. Int. J. Mod. Phys. E22 (2013) 1330018. https://doi.org/10.1142/S021830131330018X.
[11] Sebastien Guillot et al. Measurement of the Radius of Neutron Stars with High S/N Quiescent Low-mass X-ray Binaries in Globular Clusters. Astrophys.J. 772 (2013). https://doi.org/10.1088/0004-637X/772/1/7.
[12] S. Hawking, Particle Creation by Black Hole, Commun. Math. Phys. 43, 199-220(1975). https://doi.org/10.1007/BF02345020.
[13] Helmut Satz. The Quark-Gluon Plasma.Nucl.Phys.A862-863:4-12, 2011. https://doi.org/10.1016/j.nuclphysa.2011.05.014.
[14] Horst Stoecker et al. Glueballs amass at RHIC and LHC Colliders! - The early quarkless 1st order phase transition at T=270 MeV - from pure Yang-Mills glue plasma to GlueBall-Hagedorn states. J. Phys. G 43 (2016) 1, 015105.
[15] C. L. Morris et al. A new method for measuring the neutron lifetime using an in situ neutron detector. Report number: LAUR-16-27352. https://arxiv:1610.04560.
[16] B. Andreas et al. An accurate determination of the Avogadro constant by counting the atoms in a 28Si crystal. Phys. Rev. Lett. 106, 030801. https://doi.org/10.1103/PhysRevLett.106.030801.
[17] Chowdhury, P.R. et al. Modified Bethe-Weizsacker mass formula with isotonic shift and new driplines. Mod. Phys. Lett. A20 p.1605-1618. (2005). https://doi.org/10.1142/S021773230501666X.
[18] N.Ghahramany et al. New approach to nuclear binding energy in integrated nuclear model. Journal of Theoretical and Applied Physics 6:3 (2012). https://doi.org/10.1186/2251-7235-6-3.
[19] U. V. S Seshavatharam, S. Lakshminarayana. On the role of strong coupling constant and nucleons in understanding nuclear stability and binding energy. Journal of Nuclear Sciences. (2017); 4(1): 7-18.
[20] Seshavatharam, U.V.S.; Lakshminarayana, S.To unite nuclear and sub-nuclear strong interactions. International Journal of Physical Research, 5 (2) (2017) 104-108. https://doi.org/10.14419/ijpr.v5i2.8385.
[21] Seshavatharam, U.V.S.; Lakshminarayana, S. To Develop a Virtual Model of Microscopic Quantum Gravity. Preprints 2017, 2017110119, 23 pages.
[22] Brandenburg J. E. The GEM Unification Theory of the Vacuum: Did Dimensional Collapse Trigger the Big Bang. International Journal of Astrophysics and Space Science. Special Issue: Quantum Vacuum, Fundamental Arena of the Universe: Models, Applications and Perspectives. Vol. 2, No. 6-1, pp. 24-38. (2014).
-
Downloads
-
How to Cite
UV, S. S., & S, L. (2017). To fit Fermi’s weak coupling constant with three gravitational constants. International Journal of Physical Research, 6(1), 8-12. https://doi.org/10.14419/ijpr.v6i1.8781Received date: 2017-11-30
Accepted date: 2017-12-23
Published date: 2017-12-28