In Vitro Anti-cholinesterase and Cognitive Enhancing Properties of Essential Oils from Piper nigrum L. and Monodora myristica (Gaertn) Dunal

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Aging in humans generally is associated with deterioration of cognitive abilities, particularly of learning and memory leading to dementia, including Alzheimer’s disease. A number of herbal medicines are reported to improve brain function and intelligence. In the present study, the ameliorating effects of essential oil extracted from Piper nigrum and Monodora myristica on learning and memory in Scopolamine induced amnesic mice were determined using two cognitive behavioural paradigms: the Step-Through Passive Avoidance and Morris-Water Maze test. Essential oils were obtained by hydro-distillation using a Clavenger-type apparatus and their profiles analyzed by GC-MS. Inhibitory effects on AChE and BuChE were investigated by Ellman’s method. The animals were assessed for performance by measuring the Step-Through Latency Time (SLT) and Escape Latency Time (ELT). Brain cholinesterase activities were assayed in brain tissues from the mice. The results showed that M. myristica and P. nigrum oils were characterized by 51 (94.76%) and 61 (90.65%) components, respectively. M. myristica is dominated by α-phellandrene (18.13%), while P. nigrum is dominated by β-pinene (5.92%) and caryophyllene (4.55%). Both oils at 416 µg/ml elicited significant inhibitory (p>0.05) activity with M. myristica exhibiting a stronger inhibition against AChE and BuChE than P. nigrum. This trend was also exhibited significantly (p>0.05) in both ELT and the SLT when compared to scopolamine-treated group. In conclusion, the seeds of M. myristica and P. nigrum are potential sources of active metabolites with anti-cholinesterase and cognition enhancing properties, but M. myristica exhibited a higher activity.

     

     


  • Keywords


    Anti-Cholinesterase; Essential Oil; Piper Nigrum; Monodora Myristica; and GC-MS

  • References


      [1] Ali, N A. A., Crouch, R. A., Al-Fatimi, M., Arnold, N., Teichert, A., Setzer, W. N. and Wessjohann, L. (2012). Chemical composition, antimicrobial, antiradical and anticholinesterase activity of the essential oil of Pulicariastephanocarpa from Soqotra. Natural Product Communications.7 (1): 113-116.

      [2] Andersen, J. K. (2004). Oxidative stress in neurodegeneration: Cause or consequence? Nature Medicine, 10: 18–25. https://doi.org/10.1038/nrn1434.

      [3] Anekonda, T. S. and Reddy, P. H. (2005). Can herbs provide a new generation of drugs for treating Alzheimer’s disease? Brain Research Reviews50: 361 – 376 https://doi.org/10.1016/j.brainresrev.2005.09.001.

      [4] Arruda, M., Hugo, V., Nuno, R., Nuno R. N., José, S., Rosa, J., Nogueira, M. F. and Maria do Carmo B. (2012). Anti-acetylcholinesterase and Antioxidant Activity of Essential Oils from Hedychium gardnerianum Sheppard ex Ker-Gawl. Molecules. 17: 3082-3092 https://doi.org/10.3390/molecules17033082.

      [5] Auld, D.S., Kornecook, T.J., Bastianetto, S., Quirion, R., 2002. Alzheimer’s diseaseandthe basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog. Neurobiol.68, 209–245. https://doi.org/10.1016/S0301-0082(02)00079-5.

      [6] Ballatore, C., Lee, V.M., Trojanowski, J.Q., 2007. Tau-mediated neurodegeneration inAlzheimer’s disease and related disorders. Nat. Rev. Neurosci. 8, 663–672 https://doi.org/10.1038/nrn2194.

      [7] Bartus, R.T., 2000. On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol. 163, 495–529. https://doi.org/10.1006/exnr.2000.7397.

      [8] Bourin, M., Ripoll, N., Dailly, E., 2003. Nicotinic receptors and Alzheimer’s disease. Curr. Med. Res. Opin.19, 169–177. https://doi.org/10.1185/030079903125001631.

      [9] Caughey, B. and Lansbury, P.T., 2003. Protofibrils, pores, fibrils, and neurodegeneration:separating the responsible protein aggregates from the innocent bystanders.Annu. Rev. Neurosci.26, 267–298. https://doi.org/10.1146/annurev.neuro.26.010302.081142.

      [10] Celone, K.A., Calhoun, V.D., Dickerson, B.C., Atri, A., Chua, E.F., Miller, S.L., DePeau, K., Rentz, D.M., Selkoe, D.J., Blacker, D., Albert, M.S., Sperling, R.A., 2006. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J. Neurosci.26, 10222–10231. https://doi.org/10.1523/JNEUROSCI.2250-06.2006.

      [11] Das, A., Shanker, G., Nath, C., Pal, R., Singh, S. and Singh, H. K. (2002). A comparative study in rodents of standardized extracts of Bacopamonniera and Ginkgo biloba anticholinesterase and cognitive enhancing activities. Pharmacological and BiochemicalBehaviour. 73:893-900 https://doi.org/10.1016/S0091-3057(02)00940-1.

      [12] Dheen, S.T., Kaur, C., Ling, E.A., 2007. Microglial activation and its implications in the brain diseases. Curr. Med. Chem. 14, 1189–1197. https://doi.org/10.2174/092986707780597961.

      [13] Dhingra, D., Parle, M. and Kulkarni, S. K. (2004). Memory enhancing activity of Glycyrrhiza glabra in mice. Journal of Ethnopharmacology.91: 361-365 https://doi.org/10.1016/j.jep.2004.01.016.

      [14] El-Hela, A. and Abdullah, A. (2010). Chemical Composition and Biological Activities of Essential Oil of Salvia acetabulosa L. Grown in Egypt. Journal of Applied Sciences Research. 6(6): 690-695.

      [15] Ellman, G. L., Courtney, K. D., Andres, V. and Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology.7:88-95. https://doi.org/10.1016/0006-2952(61)90145-9.

      [16] Figueiro, M., Ilha, J., Linck, V.M., Herrmann, A.P., Nardin, P., Menezes, C.B., Achaval,M., Goncalves, C.A., Porciuncula, L.O., Nunes, D.S., Elisabetsky, E., 2011. The Amazonian herbal Marapuama attenuates cognitive impairment and neuroglial degeneration in a mouse Alzheimer model. Phytomedicine 18, 327–333. https://doi.org/10.1016/j.phymed.2010.07.013.

      [17] Hancianu, M., Cioanca, O., Mihasan, M. and Hritcu, L. (2013). Neuroprotective effects of inhaled lavender oil on scopolamine–induced dementia via anti-oxidative activities in rats. Phytomedicine.20 (5): 446-452. https://doi.org/10.1016/j.phymed.2012.12.005.

      [18] Hefco, V., Yamada, K., Hefco, A., Hritcu, L., Tiron, A., Olariu, A., Nabeshima, T., 2003. Effects of nicotine on memory impairment induced by blockade of muscarinic, nicotinic and dopamine D2 receptors in rats. Eur. J. Pharmacol. 474, 227–232 https://doi.org/10.1016/S0014-2999(03)02034-X.

      [19] Hritcu, L., Cioanca, O. and Hancianu, M. (2012). Effects of lavender oil inhalation on improving scopolamine-induced spatial memory impairment in laboratory rats. Phytomedicine. 19(6): 529-534 https://doi.org/10.1016/j.phymed.2012.02.002.

      [20] Jirovetz Leopold, Gerhard Buchbauer, Martin Benoit Ngassoum, Margit Geissler. (2002). A roma compound analysis of Piper nigrum and Piper guineense essential oils from Cameroon using solid-phase microextraction–gas chromatography, solid-phase microextraction–gas chromatography–mass spectrometry and olfactometry. Journal of Chromatography A, 976 265–275 https://doi.org/10.1016/S0021-9673(02)00376-X.

      [21] Kashani, M.S., Tavirani, M.R., Talaei, S.A., Salami, M., 2011. Aqueous extract of lavender (Lavandula angustifolia) improves the spatial performance of a rat model of Alzheimer’s disease. Neurosci. Bull.27, 99–106. https://doi.org/10.1007/s12264-011-1149-7.

      [22] Knobloch, M., Konietzko, U., Krebs, D.C., Nitsch, R.M., 2007. Intracellular Abeta and cognitive deficits precede beta-amyloid deposition in transgenic arc-Abeta mice. Neurobiol. Aging 28, 1297–1306. https://doi.org/10.1016/j.neurobiolaging.2006.06.019.

      [23] LaFerla, F.M., Green, K.N., Oddo, S., 2007. Intracellular beta-amyloid in Alzheimer’sdisease. Nat. Rev. Neurosci. 8 499–509. https://doi.org/10.1038/nrn2168.

      [24] Lahiri, D.K., Farlow, M.R., Greig, N.H., Sambamurti, K., 2002. Current drug targets for Alzheimer’s disease treatment. Drug Develop. Res. 56, 267–281. https://doi.org/10.1002/ddr.10081.

      [25] Lane, R. M., Potkin, S. G. and Enz, A. (2005).Targeting acetylcholinesterase and butyrylcholinesterase in dementia. The International Journal of Neuropsychopharmacology. 46(3): 123-129.

      [26] Majlessi, N., Choopani, S., Kamalinejad, M. and Azizi, Z. (2012). Amelioration of β-amyloid –induced cognitive deficits by Zataria multiflora Bloiss. Essential oil in a rat model of Alzheimer;s disease. CNS Neuroscience and Therapeutics.18 (4): 295-301. https://doi.org/10.1111/j.1755-5949.2011.00237.x.

      [27] Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods.11: 47-60. https://doi.org/10.1016/0165-0270(84)90007-4.

      [28] Natarajan, S., Shunmugiah, K, P. and Kasi, P. D. (2013). Plants traditionally used in age-related brain disorders (dementia): An ethnopharmacological survey. Pharmaceutical Biology.51 (4): 492-523. https://doi.org/10.3109/13880209.2012.738423.

      [29] Obuotor, E. M. (2004). The mode of action of Ichthtotoxic principles in Raphia hookeri fruit. Ph.D Thesis. Obafemi Awolowo University, Ile-Ife.

      [30] Owokotomo, I. A. and Ekundayo, O. (2012). Comparative Study of the Essential Oils of Monodora Myristica from Nigeria. European Chemical Bulletin, Vol 1, No 7 (2012).

      [31] Perry, N. S., Bollen, C., Perry, E. K. and Ballard, C. (2003). Salvia for dementia therapy: review of pharmacological activity and pilot tolerability clinical trial. Pharmacology, Biochemistry and Behavior. 75 651–659. https://doi.org/10.1016/S0091-3057(03)00108-4.

      [32] Pimplikar, S.W., 2009. Reassessing the amyloid cascade hypothesis of Alzheimer’sdisease. Int. J. Biochem. Cell Biol. 41, 1261–1268. https://doi.org/10.1016/j.biocel.2008.12.015.

      [33] Rauk, A., 2009. The chemistry of Alzheimer’s disease. Chem. Soc. Rev. 38, 2698–2715. https://doi.org/10.1039/b807980n.

      [34] Savelev, S., Okello, E., Perry, N. S. L., Wilkins, R. M. and Perry, E. K. (2003). Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacology, Biochemistry and Behavior.75 661–668. https://doi.org/10.1016/S0091-3057(03)00125-4.

      [35] Sennuga, A. T. (2007). A Comparative Study of the Anti-cholinesterase and Cognitive Enhancing Properties of Morinda lucida Benth and Croton zambesicus Muell. Arg. in Adult Mice. M.Sc Thesis. Obafemi Awolowo University, Ile-Ife.

      [36] Sharififar, F., Mirtajadini, M., Azampour, M. J. and Zamani, E (2012). Essential oil and methanolic extract of Zataria multiflora Boiss with anticholinesterase effect. Pakistan Journal of Biological Sciences, 15 (1): 49-53. https://doi.org/10.3923/pjbs.2012.49.53.

      [37] Soreq, H. and Seidman, S. (2001). Acetylcholinesterase new roles for an old actor. National Review of Neuroscience.2 294-302. https://doi.org/10.1038/35067589.

      [38] Strohmeyer, R., Rogers, J., 2001. Molecular and cellular mediators of Alzheimer’s disease inflammation. J. Alzheimers Dis. 3, 131–157. https://doi.org/10.3233/JAD-2001-3118.

      [39] Sun, X.L., Ito, H., Masuoka, T., Kamei, C., Hatano, T., 2007. Effect of Polygala tenuifolia root extract on scopolamine-induced impairment of rat spatial cognition in an eight-arm radial maze task. Biol. Pharm. Bull.30, 1727–1731. https://doi.org/10.1248/bpb.30.1727.

      [40] Syad, A. N., Karutha P. S. and Pandima D. K. (2012). Assessment of Anticholinesterase Activity of Gelidiella acerosa: Implications for Its Therapeutic Potential against Alzheimer’s disease. Evidence-Based Complementary and Alternative Medicine. 2012. 1-8. https://doi.org/10.1155/2012/497242.

      [41] Tchoumbougnang, F., Jazet, D. P. M., Sameza, L. M., Fombotioh, N., Wouatsa, N. A. V., Amvam, Z. P. H. and Menut, C. (2009). Comparative essential oils composition and insecticidal effect of different tissues of Piper capense L. Piper guineense Schum. Et Thonn., Piper nigrum L. and Piperumbellatum L. grown in Cameroun. African Journal of Biotechnology.8 (3):424-431.

      [42] Tuppo, E.E., Arias, H.R., 2005. The role of inflammation in Alzheimer’s disease. Int.J. Biochem. Cell Biol. 37, 289–305.

      [43] Ustun, O., Fatma, S. S., Mine, K, Ilkay, E. O., Murat, K. and Kemal, H. C. B. (2012). Investigation on chemical composition, anticholinesterase and antioxidant activities of extracts and essential oils of Turkish Pinus species and pycnogenol. Industrial Crops and Products.38: 115– 123 https://doi.org/10.1016/j.indcrop.2012.01.016.

      [44] Wang, Q., Sun, L.-H., Jia, W., Liu, X.-M., Dang, H.-X., Mai, W.-L., Wang, N., Steinmetz, A., Wang, Y.-Q., Xu, C.-J., 2010. Comparison of ginsenosides Rg1 and Rb1 for their effects on improving scopolamine-induced learning and memory impairment in mice. Phytother. Res. 24, 1748–1754 https://doi.org/10.1002/ptr.3130.

      [45] Yamin, G., 2009. NMDA receptor-dependent signaling pathways that underlie amyloid beta-protein disruption of LTP in the hippocampus. J. Neurosci.87, 1729–1736.


 

View

Download

Article ID: 13578
 
DOI: 10.14419/ijpt.v6i2.13578




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.