Acute toxicity: a comparative study on the methanol extract of three selected plants reported to have anticancer properties

  • Authors

    • Oladipo Miriam Oluchi Department of Veterinary Pharmacology and Toxicology, Joseph Sarwuan Tarka University, Makurdi, Benue state, Nigeria
    • Oladipo Bamidele Fatai Del Scan Services Limited. 12th, 7th Avenue off Inikpi Street, High Level, Makurdi, Benue State, Nigeria
    • Nwankwo Henry Chukwuebuka Department of Veterinary Pharmacology and Toxicology, Joseph Sarwuan Tarka University, Makurdi, Benue state, Nigeria
    • Bosha Joel A Department of Veterinary Pharmacology and Toxicology, Joseph Sarwuan Tarka University, Makurdi, Benue state, Nigeria
    • Saganuwan Alhaji Saganuwan Department of Veterinary Pharmacology and Toxicology, Joseph Sarwuan Tarka University, Makurdi, Benue state, Nigeria
    • Onyeyili Patrick Azubuike Department of Veterinary Pharmacology and Toxicology, Joseph Sarwuan Tarka University, Makurdi, Benue state, Nigeria
    2024-07-26
    https://doi.org/10.14419/vf8xdc66
  • Acute Toxicity; Lethal Median Dose (LD50); Curcuma Longa; Datura Metel; Phoenix Dactylifera.
  • Abstract

    Background: An acute toxicity study evaluates the harmful effects of substances absorbed through any route and utilizes parameters like LD50 to assess toxicity. While mortality is commonly used as a primary endpoint, considering signs of toxicity is crucial as they indicate adverse effects on internal organs, which can lead to lasting damage or death.

    Objectives: This study compares the acute toxicity of three medicinal plants with anticancer properties, highlighting the importance of understanding their safety profiles despite their therapeutic potential.

    Methods: The acute toxicity of methanol extracts from Curcuma longa rhizome, Datura metel fruits, and Phoenix dactylifera fruits in rats were compared to determine the safest of the three plant extracts. A new modified method was employed to estimate the Lowest Observed Adverse Effect Level (LOAEL) and the No Observed Adverse Effect Level (NOAEL). Each dose level involved three (3) rats, with a default dose progression of log 3.2 if the animal dies or a sign of toxicity is observed.

    Results: While no mortality occurred at a dose of 5000 mg/kg body weight for any extract, signs of toxicity were observed. Histological changes were noted in animals without apparent signs of toxicity, challenging the assumption that LD50 values exceeding 5000 mg/kg body weight indicate non-toxicity. Threshold dose analysis revealed differences in toxicity among the extracts. Curcuma longa rhizome methanol extract demonstrated the highest safety margin.

    Conclusion: These findings emphasize the importance of considering signs of toxicity alongside mortality in acute toxicity assessments.

  • References

    1. S. Creton, I. C. Dewhurst, , L. K. Earl, , S. C. Gehen, , R. L. Guest, , J. A. Hotchkiss, , I. Indans, M. R. Woolhiser, R Billington. Acute toxicity testing of chemicals—opportunities to avoid redundant testing and use alternative approaches. Critical reviews in toxicology, (2010). 40(1), 50-83. https://doi.org/10.3109/10408440903401511.
    2. E. Walum Acute oral toxicity. Environmental health perspectives, (1998) 106(suppl 2), 497-503. https://doi.org/10.1289/ehp.98106497.
    3. Organisation for Economic Cooperation and Development. OECD guidelines for the testing of chemicals‐425 (acute oral toxicity–up and down procedure). Organisation for Economic Cooperation and Development. (2001).
    4. E. Schlede Oral acute toxic class method: OECD Test Guideline 423. Rapporti istisan, (2002). (41), 32-36.
    5. A. Rispin, D. Farrar, E. Margosches, K. Gupta, K. Stitzel, G. Carr, M. Greene, W. Meyer, D. McCall Alternative methods for the median lethal dose (LD (50)) test: the up-and-down procedure for acute oral toxicity. ILAR journal, (2002). 43(4), 233–243. https://doi.org/10.1093/ilar.43.4.233.
    6. M. Van den Heuvel, A new approach to the classification of substances and preparations on the basis of their acute toxicity: a report by the British toxicology society* working party on toxicity. Human Toxicology, (1984). 3(2), 85-92 https://doi.org/10.1177/096032718400300202.
    7. Y Piao., Y. Liu, X. Xie Change trends of organ weight background data in Sprague Dawley rats at different ages. Journal of toxicologic pathology (2013). 26(1), 29-34. https://doi.org/10.1293/tox.26.29.
    8. W. C. Silva Faria, N. Veggi, N. H. Kawashita, F. Lemes, C. Cardoso, A. Converti, M. Moura, N. Bragagnolo Acute and subacute oral toxicity assessment of dry encapsulated and non-encapsulated green coffee fruit extracts. Journal of Food and Drug Analysis, (2020). 28(2), 337-355. https://doi.org/10.38212/2224-6614.1067.
    9. M. A. Miller, J. F. Zachary Mechanisms and morphology of cellular injury, adaptation, and death. Pathologic basis of veterinary dis-ease, 2. (2017). https://doi.org/10.1016/B978-0-323-35775-3.00001-1.
    10. E.O.J. Ozioma, O.A.N. Chinwe Herbal medicines in African traditional medicine. Herbal medicine, (2019). 10, 191-214.
    11. A. G. Desai, G. N. Qazi, R. K. Ganju, M. El-Tamer, J. Singh, A. K. Saxena, Y. S. Bedi, S. C. Taneja, H. K. Bhat Medicinal plants and cancer chemoprevention. Current drug metabolism, (2008) 9(7), 581-591. https://doi.org/10.2174/138920008785821657.
    12. R. Rodrigo, M. Libuy, F. Feliu, D. Hasson Polyphenols in disease: from diet to supplements. Current pharmaceutical biotechnology, (2014). 15(4), 304-317. https://doi.org/10.2174/138920101504140825113815.
    13. A. Remesh Drug resistance in cancer chemotherapy-an overview. Int. J. Cur. Res. Rev, (2013). 5(08).
    14. S. Lev-Ari, A. Starr, A. Vexler, V. Karaush, V. Loew, J. Greif, E. Fenig, D. Aderka, R. Ben-Yosef, Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is associated with increased apoptosis, down-regulation of COX-2 and EGFR and inhibition of Erk1/2 activity. Anticancer research, (2006). 26(6B), 4423-4430.
    15. Y. Pan, X. Wang, X. Hu Cytotoxic withanolides from the flowers of Datura metel. Journal of natural products, (2007). 70(7), 1127-1132. https://doi.org/10.1021/np070096b.
    16. Y. Xu, J. Zhang, J. Han, X. Pan, Y. Cao, H. Guo, X. Li Curcumin inhibits tumor proliferation induced by neutrophil elastase through the upregulation of α1-antitrypsin in lung cancer. Molecular oncology, (2012). 6(4), 405-417. https://doi.org/10.1016/j.molonc.2012.03.005.
    17. B. B. Nazeema, J. Julie, J. Abirami, R. Kumareasan, T. Muthukumaran, S. Rajasree, J.K. Jothi, S. Kumaran Anti-cancer activity of Datu-ra metel on MCF-7 cell line. Asian J Pharm Clin Res, (2014). 7(5), 181-3.
    18. H. Jin, F. Qiao, Y. Wang, Y. Xu, Y. Shang Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncology reports, (2015). 34(5), 2782-2789. https://doi.org/10.3892/or.2015.4258.
    19. M. Chakroun, B. Khemakhem, H. B. Mabrouk, H. El Abed, M. Makni, N. Drira, Marrakchi, N., and Mejdoub, H. (2016). Evaluation of anti-diabetic and anti-tumoral activities of bioactive compounds from Phoenix dactylifera L’s leaf: In vitro and in vivo approach. Bio-medicine & Pharmacotherapy, 84, 415-422. https://doi.org/10.1016/j.biopha.2016.09.062.
    20. F. Khan, F. Ahmed, P. N. Pushparaj, A. Abuzenadah, T. Kumosani, E. Barbour, M. AlQahtani, K. Gauthaman. Ajwa date (Phoenix dac-tylifera L.) extract inhibits human breast adenocarcinoma (MCF7) cells in vitro by inducing apoptosis and cell cycle arrest. PloS one, (2016). 11(7), e0158963. https://doi.org/10.1371/journal.pone.0158963.
    21. Council for International Organizations of Medical Sciences. (1985). International guiding principles for biomedical research involving animals. Altern Lab Anim., 12, ii.
    22. N. Toudert, A. Zaiter, S. E. Djilani, N Dada., A. Djilani, A. Dicko Impact of methanol–water ratio of leaf and root extracts of ampe-lodesma mauritanicaon the antioxidant activity, and effect of different solvent extraction on phenolic compounds quantification. Acta Sci. Nutr. Health, (2017). 1, 3-7.
    23. K. Uthayarasa, , K. Pathmanathan, J. P. Jeyadevan, E. C. Jeeyaseelan. Antibacterial activity and qualitative phytochemical analysis of medicinal plant extracts obtained by sequential extraction method. IJIB, (2010) 10(2), 76-81.
    24. A. Pandey, S Tripathi. Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. Journal of Pharmacognosy and Phytochemistry, (2014). 2(5), 115-119.
    25. E. Chinedu, D. Arome, F. S. Ameh A new method for determining acute toxicity in animal models. Toxicology international, (2013). 20(3), 224. https://doi.org/10.4103/0971-6580.121674.
    26. S. A. Saganuwan Toxicity studies of drugs and chemicals in animals: an overview. Bulgarian Journal of Veterinary Medicine, (2017). 20(4). https://doi.org/10.15547/bjvm.983.
    27. R. D. Bruce. An up-and-down procedure for acute toxicity testing. Fundamental and Applied Toxicology, (1985). 5(1), 151-157. https://doi.org/10.1016/0272-0590(85)90059-4.
    28. W. Underwood, R. Anthony. AVMA guidelines for the euthanasia of animals: 2020 edition. Retrieved on March, (2020). 2013(30), 2020-1.
    29. S. A. Saganuwan. Arithmetic-Geometric-Harmonic (AGH) method of rough estimation of median lethal dose (LD50) using up-and-down procedure. J Drug Metab Toxicol, (2015). 6(2), 1-3. https://doi.org/10.1016/j.toxlet.2014.06.454.
    30. R. A. Drury, R. Cancerson Carlton’s Histo-pathological Techniques. 4th ed. Oxford University press. pp(1976). 21- 70
    31. M. A. Giordani, T. C. M. Collicchio, S. D. Ascêncio, D. T. de Oliveira Martins, S. O. Balogun, I. G. C. Bieski, N. H. Kawashita Hy-droethanolic extract of the inner stem bark of Cedrela odorata has low toxicity and reduces hyperglycemia induced by an overload of sucrose and glucose. Journal of Ethnopharmacology, (2015). 162, 352-361. https://doi.org/10.1016/j.jep.2014.12.059.
    32. P. V. Turner, T. Brabb, C. Pekow, M. A. Vasbinder. Administration of substances to laboratory animals: routes of administration and factors to consider. Journal of the American Association for Laboratory Animal Science, (2011). 50(5), 600-613.
    33. E. A. Thackaberry. Vehicle selection for nonclinical oral safety studies. Expert Opinion on Drug Metabolism & Toxicology, (2013). 9(12), 1635-1646. https://doi.org/10.1517/17425255.2013.840291.
    34. E. O. Erhirhie, C. P. Ihekwereme, E. E. Ilodigwe. Advances in acute toxicity testing: strengths, weaknesses and regulatory acceptance. Interdisciplinary toxicology, (2018). 11(1), 5-12. https://doi.org/10.2478/intox-2018-0001.
    35. D. G. Maheshwari, N. K. Shaikh An overview on toxicity testing method. Int J Pharm Technol, (2016). 8(2), 3834-3849.
    36. A. Hodge, B. Sterner Toxicity classes in: Canadian Centre for occupational health and Safety. Copyright@ 1997–2010.
    37. D. L. Eaton, S. G. Gilbert Principles of toxicology. Casarett & Doull’s Toxicology. The Basic Science of Poisons. CD Klaassen (ed), (2008). 11-34.
    38. D. Curtis Casarett and Doull’s TOXICOLOGY The Basic Science of Poisons Eighth Edition. (2013).
    39. E. M. Faustman, S. M. Bartell. Review of noncancer risk assessment: Applications of benchmark dose methods. Human and Ecological Risk Assessment: An International Journal, (1997). 3(5), 893-920. https://doi.org/10.1080/10807039709383733.
  • Downloads

  • How to Cite

    Oladipo Miriam Oluchi, Bamidele Fatai , O. ., Henry Chukwuebuka , N. ., Joel A , B. ., Alhaji Saganuwan , S. ., & Patrick Azubuike, O. . . (2024). Acute toxicity: a comparative study on the methanol extract of three selected plants reported to have anticancer properties. International Journal of Pharmacology and Toxicology, 12(1), 17-26. https://doi.org/10.14419/vf8xdc66