ATM kinase inhibitor KU-55933 contribution in cisplatin mediated HeLa proliferation

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Several approaches including chemotherapy and radiation therapies are being at the forefront to treat various types of cancer including cervical cancer. However, the success and failure of genotoxic based therapy is attributed to aberrant ability of carcinoma to patch up genomic breaks. Here, we have used cisplatin as a genotoxic drug model and HeLa as in vitro carcinoma model due to less responsiveness and resistance of HeLa against cisplatin. Here, attempts are made to investigate the effects of DNA double strand break inhibitor KU-55933 against the cisplatin cell growth and cytotoxicity. Following experiments namely in vitro plasmid DNA metabolizing, Trypan blue dye exclusion, MTT, and PI based Flow cytometery PI assays were conducted to study cell growth and cytotoxicity effects. Based on the cell viability and PI based staining data, results remarked that KU-55933 combined with cisplatin could bring convincing cell growth arrest in HeLa. The reduction in HeLa proliferation was noticed from 70% to 30% in case of KU-55933 added with cisplatin over cisplatin alone. However, we noticed none apoptosis based cell cytotoxicity in case of cisplatin alone or combined with the inhibitors. We also observed significant DNA instability in case of KU-55933 treated HeLa lysates added to plasmid DNA substrate over HeLa lysate without KU-55933 treatment. In conclusion, KU-55933 can potentiate low dose of cisplatin response against HeLa. The effect of KU-55933 may not be attributed due to its enhancing the apoptosis way, rather than through cell growth arrest mechanism due to extensive DNA breaks.


  • Keywords


    Genotoxic Drug; Double Strand Break; Inhibitor; Carcinoma; DNA Break.

  • References


      [1] Albarakati N, Abdel-Fatah TM, Doherty R, Russell R, Agarwal D, Moseley P, Perry C, Arora A, Alsubhi N, Seedhouse C et al. 2015. Targeting BRCA1-BER deficient cancer by ATM or DNA-PKcs blockade either alone or in combination with cisplatin for personalized therapy. Mol Oncol. 9(1):204-17. http://dx.doi.org/10.1016/j.molonc.2014.08.001.

      [2] Álvarez-Quilón A, Serrano-Benítez A, Lieberman JA, Quintero C, Sánchez-Gutiérrez D, Escudero LM, Cortés-Ledesma F. 2014. ATM specifically mediates repair of double-strand breaks with blocked DNA ends. Nat Commun. 5:3347. http://dx.doi.org/10.1038/ncomms4347.

      [3] Andrs M, Korabecny J, Nepovimova E, Jun D, Hodny Z, Kuca K. 2016. Small Molecules Targeting Ataxia Telangiectasia and Rad3-Related (ATR) Kinase: An Emerging way to Enhance Existing Cancer Therapy. Curr Cancer Drug Targets. 16(3):200-8. http://dx.doi.org/10.2174/156800961603160206122927.

      [4] Aparicio T, Baer R, Gautier J. 2014. DNA double-strand break repair pathway choice and cancer. DNA repair. 19:169-75. http://dx.doi.org/10.1016/j.dnarep.2014.03.014.

      [5] Braunstein LZ, Taghian AG. Molecular Phenotype, Multigene Assays, and the Locoregional Management of Cancer. 2016. Semin Radiat Oncol. 26(1):9-16. http://dx.doi.org/10.1016/j.semradonc.2015.08.002.

      [6] Ceccaldi R, O'Connor KW, Mouw KW, Li AY, Matulonis UA, D'Andrea AD, Konstantinopoulos PA. 2015. A unique subset of epithelial ovarian cancers with platinum sensitivity and PARP inhibitor resistance. Cancer Res. 75(4):628-34. http://dx.doi.org/10.1158/0008-5472.CAN-14-2593.

      [7] Ceccaldi R, Rondinelli B, D'Andrea AD. 2016. Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol. 26(1):52-64. http://dx.doi.org/10.1016/j.tcb.2015.07.009.

      [8] Chapman JR, Taylor MR, Boulton SJ. 2012. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 47(4):497-510. http://dx.doi.org/10.1016/j.molcel.2012.07.029.

      [9] Curtin, N. J. 2012. DNA repair dysregulation from cancer driver to therapeutic target. Nature Reviews Cancer. 12(12):801-817. http://dx.doi.org/10.1038/nrc3399.

      [10] De Bont R and van Larebeke N. 2004. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 19(3):169-185. http://dx.doi.org/10.1093/mutage/geh025.

      [11] Flores-Pérez A, Rafaelli LE, Ramírez-Torres N, Aréchaga-Ocampo E, Frías S, Sánchez S4, Marchat LA, Hidalgo-Miranda A, Quintanar-Jurado V, Rodríguez-Cuevas S, Bautista-Piña V, et al. 2014. RAD50 targeting impairs DNA damage response and sensitizes human cancer cells to cisplatin therapy. Cancer Biol Ther. 15(6):777-88. http://dx.doi.org/10.4161/cbt.28551.

      [12] Gavande NS, VanderVere-Carozza PS, Hinshaw HD, Jalal SI, Sears CR, Pawelczak KS, Turchi JJ. 2016. DNA repair targeted therapy: The past or future of cancer treatment? Pharmacol Ther. pii: S0163-7258(16)00032-2. doi: 10.1016/j.pharmthera.2016.02.003. http://dx.doi.org/10.1016/j.pharmthera.2016.02.003.

      [13] Ha K, Fiskus W, Choi DS, Bhaskara S, Cerchietti L, Devaraj SG, Shah B, Sharma S, Chang JC, Melnick Am et al. 2014. Histone deacetylase inhibitor treatment induces 'BRCAness' and synergistic lethality with PARP inhibitor and cisplatin against human triple negative cancer cells. Oncotarget. 5(14):5637-50. http://dx.doi.org/10.18632/oncotarget.2154.

      [14] Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell. 100(1):57-70. http://dx.doi.org/10.1016/S0092-8674(00)81683-9.

      [15] Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI, Reaper PM, Jackson SP, Curtin NJ, Smith GC. 2004. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64(24):9152-942. http://dx.doi.org/10.1158/0008-5472.CAN-04-2727.

      [16] Hitrik A, Abboud-Jarrous G, Orlovetskie N, Serruya R, Jarrous N. 2016. Targeted inhibition of WRN helicase by external guide sequence and RNase P RNA. Biochim Biophys Acta. 1859(4):572-580.

      [17] Hong KJ, Hsu MC, Hung WC. 2015. RECK impedes DNA repair by inhibiting the erbB/JAB1/Rad51 signaling axis and enhances chemosensitivity of cancer cells. Am J Cancer Res. 5(8):2422-30.

      [18] Huang F, Goyal N, Sullivan K, Hanamshet K, Patel M, Mazina OM, Wang CX, An WF, Spoonamore J, Metkar S et al. 2016. Targeting BRCA1- and BRCA2-deficient cells with RAD52 small molecule inhibitors. Nucleic Acids Res. pii: gkw087. [Epub ahead of print]. http://dx.doi.org/10.1093/nar/gkw087.

      [19] Inoue A, Kikuchi S, Hishiki A, Shao Y, Heath R, Evison BJ, Actis M, Canman CE, Hashimoto H, Fujii N. 2014. A small molecule inhibitor of monoubiquitinated Proliferating Cell Nuclear Antigen (PCNA) inhibits repair of interstrand DNA cross-link, enhances DNA double strand break, and sensitizes cancer cells to cisplatin. J Biol Chem. 289(10):7109-20. http://dx.doi.org/10.1074/jbc.M113.520429.

      [20] Jackson SP, Bartek J. 2009. The DNA-damage response in human biology and disease. Nature. 461(7267):1071-8. http://dx.doi.org/10.1038/nature08467.

      [21] Jackson SP. 2002. Sensing and repairing DNA double-strand breaks. Carcinogenesis. 23(5):687-96. http://dx.doi.org/10.1093/carcin/23.5.687.

      [22] Jeggo PA, Löbrich M. 2015. How cancer cells hijack DNA double-strand break repair pathways to gain genomic instability. Biochem J. 471(1):1-11. http://dx.doi.org/10.1042/BJ20150582.

      [23] Jekimovs G, Bolderson E, Suraweera A, Adams M, O'Byrne KJ, Richard DJ. 2014. Chemotherapeutic compounds targeting the DNA double-strand break repair pathways: the good, the bad, and the promising. Front Oncol. 4:86. http://dx.doi.org/10.3389/fonc.2014.00086.

      [24] Kavanagh, J.N. Redmond, K.M. Schettino, G. and Prise, K.M. 2013. DNA double strand break repair: a radiation perspective. Antioxidants & redox signaling, 18(18), pp.2458-2472.

      [25] Kelley MR, Logsdon D, Fishel ML. 2014. Targeting DNA repair pathways for cancer treatment: what's new? Future Oncol. 10(7):1215-1237. http://dx.doi.org/10.2217/fon.14.60.

      [26] Khanna A. 2015. DNA damage in cancer therapeutics: a boon or a curse? Cancer Res. 5(11):2133-8. http://dx.doi.org/10.1158/0008-5472.CAN-14-3247.

      [27] Kimbung S, Loman N, Hedenfalk I. 2015. Clinical and molecular complexity of cancer metastases. Semin Cancer Biol.35:85-95. http://dx.doi.org/10.1016/j.semcancer.2015.08.009.

      [28] Kristine S. Louis and Andre C. Siegel. 2011. Cell Viability Analysis Using Trypan Blue: Manualand Automated Methods. A book chapter in Martin J. Stoddart (ed.), Mammalian Cell Viability: Methods and Protocols, Methods in Molecular Biology, vol. 740, DOI 10.1007/978-1-61779-108-6_1, © Springer Science+Business Media, LLC 2011.

      [29] Leisching G, Loos B, Botha M, Engelbrecht AM. 2015. Bcl-2 confers survival in cisplatin treated cervical cancer cells: circumventing cisplatin dose-dependent toxicity and resistance. J Transl Med. 13:328. doi: 10.1186/s12967-015-0689-4. http://dx.doi.org/10.1186/s12967-015-0689-4.

      [30] Lieber MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010; 79: 181-211. http://dx.doi.org/10.1146/annurev.biochem.052308.093131.

      [31] Liu F, Suryadi J, Bierbach U. 2015. Cellular Recognition and Repair of Monofunctional-Intercalative Platinum--DNA Adducts. Chem Res Toxicol. 28(11):2170-8. http://dx.doi.org/10.1021/acs.chemrestox.5b00327.

      [32] Liu Y, Li Y, Lu X. 2016. Regulators in the DNA damage response. Arch Biochem Biophys. 15; 594:18-25. http://dx.doi.org/10.1016/j.abb.2016.02.018.

      [33] Mladenov E, Magin S, Soni A, Iliakis G. 2016. DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: Cell cycle and proliferation-dependent regulation. Semin Cancer Biol. pii: S1044-579X (16)30007-4. doi: 10.1016/j.semcancer.2016.03.003. http://dx.doi.org/10.1016/j.semcancer.2016.03.003.

      [34] O'Connor MJ. 2015. Targeting the DNA Damage Response in Cancer. Mol Cell. 60(4):547-560. http://dx.doi.org/10.1016/j.molcel.2015.10.040.

      [35] Puigvert JC, Sanjiv K, Helleday T. 2016. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J. 283(2):232-45. http://dx.doi.org/10.1111/febs.13574.

      [36] Rajamanickam S, Panneerdoss S, Gorthi A, Timilsina S, Onyeagucha B, Kovalsky D, Ivanov D, Hanes MA, Vadlamudi RK, Chen Y et al. 2016. Inhibition of FOXM1-Mediated DNA repair by Imipramine Blue Suppresses Cancer Growth and Metastasis. Clin Cancer Res. 2016 Feb 29. pii: clincanres.2535.2015.

      [37] Ratner ES, Zhu YL, Penketh PG, Berenblum J, Whicker ME, Huang PH, Lee Y, Ishiguro K, Zhu R, Sartorelli AC, Lin ZP. 2016. Triapine potentiates platinum-based combination therapy by disruption of homologous recombination repair. Br J Cancer. 114(7):777-786. http://dx.doi.org/10.1038/bjc.2016.54.

      [38] Samadder P, Aithal R, Belan O, Krejci L. 2016. Cancer TARGETases: DSB repair as a pharmacological target. Pharmacol Ther. 2016 Feb 18. pii: S0163-7258(16)00036-X. doi: 10.1016/j.pharmthera.2016.02.007. http://dx.doi.org/10.1016/j.pharmthera.2016.02.007.

      [39] Schnitt SJ. 2010. Classification and prognosis of invasive cancer: from morphology to molecular taxonomy. Modern Pathology. 2010. 23, S60–S64 http://dx.doi.org/10.1038/modpathol.2010.33.

      [40] Srivastava M, et al. 2012. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell. 151:1474–1487. http://dx.doi.org/10.1016/j.cell.2012.11.054.

      [41] Srivastava M, Raghavan SC. 2015. DNA double-strand break repair inhibitors as cancer therapeutics. Chem Biol. 22(1):17-29. 40.

      [42] Strober W. 2001. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2001 May;Appendix 3:Appendix 3B. doi: 10.1002/0471142735.ima03bs21. http://dx.doi.org/10.1002/0471142735.ima03bs21.

      [43] Surovtseva YV, Jairam V, Salem AF, Sundaram RK, Bindra RS, Herzon SB. 2016. Characterization of Cardiac Glycoside Natural Products as Potent Inhibitors of DNA Double-Strand Break Repair by a Whole-Cell Double Immunofluorescence Assay. J Am Chem Soc. 138(11):3844-55. http://dx.doi.org/10.1021/jacs.6b00162.

      [44] Tonsing-Carter E, Bailey BJ, Saadatzadeh MR, Ding J, Wang H, Sinn AL, Peterman KM, Spragins TK, Silver JM et al. 2015. Potentiation of Carboplatin-Mediated DNA Damage by the Mdm2 Modulator Nutlin-3a in a Humanized Orthotopic -to-Lung Metastatic Model. Mol Cancer Ther. 14(12):2850-63. http://dx.doi.org/10.1158/1535-7163.MCT-15-0237.

      [45] Toulany M, Mihatsch J, Holler M, Chaachouay H, Rodemann HP. 2015. Cisplatin-mediated radiosensitization of non-small cell lung cancer cells is stimulated by ATM inhibition. Radiother Oncol. 111(2):228-36. http://dx.doi.org/10.1016/j.radonc.2014.04.001.

      [46] Vecchio D, Frosina G. 2016. Targeting the Ataxia Telangiectasia Mutated Protein in Cancer Therapy. Curr Drug Targets. 17(2):139-53. http://dx.doi.org/10.2174/1389450115666141110154621.

      [47] Velic D, Couturier AM, Ferreira MT, Rodrigue, Poirier GG, Fleury F, Masson JY. 2015. DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles ‘heel of Cancer. Biomolecules. 5(4):3204-59 http://dx.doi.org/10.3390/biom5043204.

      [48] Weterings E, Gallegos AC, Dominick LN, Cooke LS, Bartels TN, Vagner J, Matsunaga TO, Mahadevan D. 2016. A novel small molecule inhibitor of the DNA repair protein Ku70/80.DNA Repair (Amst). 2016 Apr 7. pii: S1568-7864(15)30109-9. doi: 10.1016/j.dnarep.2016.03.014. http://dx.doi.org/10.1016/j.dnarep.2016.03.014.

      [49] Zhang T, Shen Y, Chen Y, Hsieh JT, Kong Z. 2015. The ATM inhibitor KU55933 sensitizes radioresistant bladder cancer cells with DAB2IP gene defect. Int J Radiat Biol. 91(4):368-78. http://dx.doi.org/10.3109/09553002.2015.1001531.


 

View

Download

Article ID: 6644
 
DOI: 10.14419/ijpt.v4i2.6644




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.