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Abstract

In this article, We consider the estimation problems of the parameter and reliability function of the generalized
Pareto distribution based on a progressively type-II censored sample with random (Binomial) removals. we use the
method of maximum likelihood and Bayesian estimation to estimate parameter and reliability function. Bayesian
estimates are derived under squared error and LINEX loss functions. we also construct the confidence interval for
the parameter of generalized Pareto distribution based on a progressively type-II censored sample with random
removals. The comparisons between different estimators are made based on simulation study.
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1. Introduction

In various life-testing and reliability studies, experiments must often terminate before all units on test have failed.
In such cases, one has complete information only on part of the sample. On all units which have not failed, one has
only partial information. Such data are called censored. There are several types of censored tests. One of the most
common censored tests is progressive type II censoring. In progressive type II censoring, Suppose that n units are
placed on a life test and the experimenter decides beforehand quantity m, the number of units, to be failed. Now at
the time of the first failure, R1 of the remaining n− 1 surviving units are randomly removed from the experiment.
Continuing on, at the time of the second failure, R2 of the remaining n−R1−2 units are randomly drawn from the
experiment. Finally, at the time of the mth failure, all the remaining Rm = n−m−R1−R2− ...−Rm−1 surviving
units are removed from the experiment. Note that, in this scheme, R1, R2, ..., Rm are all pre-fixed. However, in
some practical situations, these numbers may occur at random. for example, in some reliability experiments, an
experimenter may decide that it is inappropriate or too dangerous to carry on the testing on some of the tested units
even though these units have not failed. In such cases, the pattern of removal at each failure is random (Zeinab [3],
Yen and Tse [2]). This leads to progressive censoring with random removals (illustrated by ”Table 1”).

There have been several references about the statistical inference on lifetime distributions under progressive
censoring with random removals; for example, we refer to Yuen and Tse [2], Tse and Yuen [5], Tse et al. [10], Shuo
and Tao [12], Wu [11], Wu and Chang [4] and Wu et al. [9].

Based on a progressively type-II censored sample with random removals, we consider the problem of estimating
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Table 1: A schematic representation of the progressive type-II censoring with binomial removals

Process The number Failures Binomial Removals Remains

in life testing

1 n 1 R1 ∼ B(n−m, p) n− 1− R1

2 n− 1− R1 1 R2 ∼ B(n−m− R1, p) n− 2− R1 − R2

... ... ... ... ...
m− 1 n− (m− 2)−

m−2∑
j=1

Rj 1 Rm−1 ∼ B(n−m−
m−2∑
j=1

Rj , p) n− (m− 1)−
m−1∑
j=1

Rj

m n− (m− 1)−
m−1∑
j=1

Rj 1 Rm = n−m−
m−1∑
j=1

Rj 0

parameter and reliability function of the two parameter generalized Pareto distribution with the shape parameter
θ and the scale parameter σ, proposed by Castillo and Hadi [7]. under both classical and Bayesian (with different
loss functions) contexts.

The cumulative distribution function, probability density and reliability functions of two parameter generalized
Pareto distribution are respectively given by

F (x|σ, θ) = 1−
(
1− x

σ

) 1
θ

; θ > 0, 0 < x < σ (1)

and

f(x|σ, θ) =
1
θσ

(
1− x

σ

) 1
θ−1

; θ > 0, 0 < x < σ (2)

and

R(x|σ, θ) =
(
1− x

σ

) 1
θ

; θ > 0, 0 < x < σ

for more detail about two parameter generalized Pareto distribution see Castillo and Hadi [7]. two parameter
generalized Pareto distribution were widely used by several authors, Among others, we refer to Grimshaw [6],
Castillo and Hadi [7], and Castillo et al. [8].

2. Maximum likelihood estimation

Let X1 < X2 < ... < Xm be the ordered failure times out of n randomly selected times, where m is predetermined
before the test. At the ith failure, Ri items are removed from the test. For progressive censoring with pre-determined
number of removals R = (R1 = ri, ..., Rm−1) = rm−1, the likelihood function can be defined as the following form

L(σ, θ, x|R) = c

m∏

i=1

f(xi|σ, θ)[1− F (xi|σ, θ)]ri (3)

where c = n(n− 1− R1) · · ·
(

n−
m−1∑
i=1

(Ri + 1)
)

. Equation (3) is derived conditional on Ri. Each Ri can be of

any integer value between 0 and n−m−
i−1∑
j=1

(Rj). It is different from progressive censoring with fixed removal that

Ri is a random number and is assumed to follow a binomial distribution with parameter p. It means that each unit
leaves with equal probability p and the probability of Ri units leaving after the ith failure occurs is

P (R1 = r1) = pr1(1− p)n−m−r1

P (Ri = ri|Ri−1 = ri−1, ..., R1 = r1) = (n−m−
i−1∑

j=1

rj)pri(1− p)
n−m−

m−1∑
j=1

rj
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where 0 ≤ ri ≤ n−m−
i−1∑
j=1

rj(i = 1, ..., m− 1). Furthermore, we assume that Ri is independent of Xi for all i. The

joint likelihood function of X = (X1, X2, ..., Xm) and R = (r1, r2, ..., rm) can be found as

L(σ, θ, x, p) = L(σ, θ, x|R)P (R, p) (4)

where P (R, p) is the joint probability distribution of R = (r1, r2, ..., rm) and in particular

P (R, p) = P (Rm = rm|Rm−1 = rm−1, ..., R1 = r1)× ...

× P (R2 = r2|R1 = r1)P (R1 = r1)

Therefore

P (R, p) =
(n−m)!

(n−m−
m−1∑
j=1

rj)!
m−1∏
j=1

rj

p

m−1∑
j=1

rj

(1− p)
(m−1)(n−m)−

m−1∑
j=1

(m−j)rj

Substituting (1) and (2) into (4), the likelihood function takes the following form

L(σ, θ, x, p) ∝ σ−mθ−m exp

{
1
θ

m∑

i=1

(ri + 1) log
(
1− xi

σ

)}

× exp

{
−

m∑

i=1

log
(
1− xi

σ

)}
p

m−1∑
j=1

rj

(1− p)
(m−1)(n−m)−

m−1∑
j=1

(m−j)rj

I(0,σ)(xi) (5)

The first partial derivatives of log-likelihood function with respect to θ is

∂ log L(σ, θ, x, p)
∂θ

= −m

θ
−

m∑
i=1

(ri + 1) log
(
1− xi

σ

)

θ2
= 0

therefor we get the MLE of θ as in the following form

θ̂ = −
∑m

i=1(ri + 1) log
(
1− xi

σ

)

m
(6)

By the invariant property of the MLE, the MLE of the reliability function, S = R(t), with fixed t > 0. is given
by

ŜMLE =
(

1− t

σ

) 1
θ̂MLE

(7)

3. Exact interval estimation

Let X1 < X2 < · · · < Xm be a progressively type II censored sample from the generalized Pareto distribution .
Furthermore, let Yi = − 1

θ ln
(
1− xi

σ

)
, i = 1, ...,m. It is easy to show that Y1, · · · , Ym is a progressively Type II

censored sample from the standard exponential distribution. For a fixed set of R = (r1, ..., rm), let us consider the
following transformation:

Z1 = nY1

Z2 = (n− r1 − 1)(Y2 − Y1)

...
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Zm = (n− r1 − · · · − rm −m + 1)(Ym − Ym−1) (8)

Balakrishnan and Aggarwala [1] showed that the progressively type II right censored spacings Z1, Z2, ..., Zm as
defined in equation (8), are independent and identically distributed as a standard exponential distribution. Hence,
2Z1 has a chi-square distribution with 2 degrees of freedom. Now, let

W = 2
m∑

i=1

Zi = −2
θ

m∑

i=1

(ri + 1) log
(
1− xi

σ

)
=

2mθ̂

θ

It is easy to see that W has a χ2 distribution with 2m degrees of freedom. Confidence interval for θ can be obtained
through the pivotal quantity 2mθ̂

θ ∼ χ2
(2m). Since the pivotal quantity 2mθ̂

θ ∼ χ2
(2m), then we have

1− α = P

(
χ2

1−α
2
(2m) <

2mθ̂

θ
< χ2

α
2
(2m)

)

= P

(
2mθ̂

χ2
1−α

2
(2m)

< θ <
2mθ̂

χ2
α
2
(2m)

)

= P

(
−2

∑m
i=1(ri + 1) log

(
1− xi

σ

)

χ2
1−α

2
(2m)

< θ <
−2

∑m
i=1(ri + 1) log

(
1− xi

σ

)

χ2
α
2
(2m)

)
(9)

4. Bayesian estimation

In the following, we present Bayes estimators of the shape parameter and reliability function of generalized Pareto
distribution when samples are drawn from progressively Type-II censoring data with binomial removals For this
purpose we assume the parameters θ and p behave as independent random variables. In this paper, for parameter
θ we consider inverted-gamma prior distribution of the form

π1(θ) =
βα

Γ(α)
θ−(α+1)e−( β

θ ); (α, β) > 0

Independently from parameter θ, p has a beta prior distribution with parameters a and b of the form

π2(p) =
1

B(a, b)
pa−1 (1− p)b−1

, 0 < p < 1; (a, b) > 0

Based on the prior π1(θ) and π2(p), the joint prior PDF of (θ, p) is

π(θ, p) = π1(θ)π2(p), θ > 0, 0 < p < 1

=
βα

Γ(α)B(a, b)
pa−1 (1− p)b−1

θ−(α+1)e−( β
θ ); θ > 0, 0 < p < 1 (10)

It follows, from (3) and(10), that the joint posterior distribution of (θ, p) is

π(θ, p|x, r) =
β∗α∗

Γ(α∗)B(a∗, b∗)
θ−(α∗+1)e−

β∗
θ pa∗−1(1− p)b∗−1 (11)

Where α∗ = m+α, β∗ =
(
β −∑m

i=1(ri + 1) log
(
1− xi

σ

))
,a∗ = a+

∑m−1
j=1 rj b∗ = b+(m−1)(n−m)

∑m−1
j=1 (m−j)rj

Therefore, the marginal posterior PDFs of θ and p are given respectively by

π(θ|x, r) =
β∗α∗

Γ(α∗)
θ−(α∗+1)e−

β∗
θ (12)

and

π(p|x, r) =
1

B(a∗, b∗)
pa∗−1(1− p)b∗−1
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4.1. Bayesian Estimation Under squared error loss function

Under SE loss function (symmetric), the estimator of a parameters is the posterior mean. Thus, Bayes estimators
of the parameter θ is obtained by using the posterior density (12)

θ̂S = E(θ|x,r) =
β −∑m

i=1(ri + 1) log
(
1− xi

σ

)

m + α− 1
(13)

4.2. Bayesian Estimation under LINEX loss function

The LINEX loss function for θ can be expressed as the following proportional(see Basu and Ebrahimi [13])

L(∆) ∝ exp(c∆)− c∆− 1; c 6= 0

where ∆ = θ̂−θ
θ and θ̂ is an estimate of θ. The Bayes estimator of θ, denoted by θ̂L under the LINEX loss

function is the solution of the following equation.

E

[
1
θ

exp

(
cθ̂L

θ

)
|x,r

]
= ecE

[
1
θ
|x,r

]

Therefore we have

θ̂L =
β −∑m

i=1(ri + 1) log
(
1− xi

σ

)

c

(
1− e−

c
α+m+1

)
(14)

5. Bayesian estimation of reliability function S = R(t)

Other problems of interest are those of estimating the reliability function R(t), with fixed t > 0. Let the reliability
S = R(t) be a parameter itself. replacing θ =

ln σ
σ−t

− ln S in terms of S by that of equation (12), we obtain the posterior
density function S as

π (S|X) =
ν(xi, t)

α∗

Γ(α∗)
(− ln s)α∗−1

sν(xi,t)−1 (15)

where,

ν(xi, t) =
β∗

ln σ
σ−t

By using posterior density function S (15), the Bayes estimate of the S = R(t) relative to quadratic loss is

ŜS =
(

ν(xi, t)
ν(xi, t) + 1

)α∗

(16)

Under LINEX loss function, the Bayes estimate of S = R(t) using equation (15) is

ŜL = −1
c

ln

[ ∞∑

l=0

(−c)l

l!

(
ν(xi, t)

ν(xi, t) + l

)α∗
]

(17)

6. Numerical study

In this section, a Monte Carlo simulation study is conducted with various choices of sample sizes.We firstly generate
the numbers of progressive censoring with binomial removals ri(i = 1, 2, ..., m), and progressive censoring with
binomial removals samples generated from generalized Pareto distribution by using the algorithm described in
Balakrishnan and Aggarwala [1]. We used the following steps to generate a progressive censoring with binomial
removals samples generated from generalized Pareto distribution
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1. Generate a group values

ri ∼ Binomial(n−m−
i−1∑

j=1

rj , p),

rm = n−m−
m−1∑

i=1

ri , i = 1, 2, ..., m− 1

according to the relevant value of p.

2. Simulate m independent exponential random variables Z1, Z2, ..., Zm.
This can be done using inverse transformation Zi = − ln(1 − Ui) where Ui are independent uniform(0, 1)
random variables.

3. Set

Xi =
Z1

n
+

Z2

n−R1 − 1
+

Z3

n−R1 −R2 − 2
+ · · ·+ Zi

n−R1 −R2 − · · · −Ri−1 − i + 1

for i = 1, 2, ..., m. This is the required progressively type-II censored sample with binomial removals from the
standard exponential distribution.

4. Finally, we set Yi = F−1(1− exp(−Xi)),for i = 1, 2, ...,m, where F−1(.) is the inverse cumulative distribution
function of the generalized Pareto distribution. Then Y1, Y2, · · · , Ym is the required progressively type-II
censored sample with binomial removals from the generalized Pareto distribution.

5. We compute the MLE of θ and R(t) = S by (6) and (7).

6. We compute the the Bayes estimates θ and R(t) = S by respectively, using (13), (14), (16) and (17).

7. We compute the confidence interval of θ by using (9).

8. We repeat the above steps 2000 times. We then obtain the means and the MSEs (mean squared error), where

MSE = 2000−1
2000∑

i=1

(φ− φ̂)2

and φ̂ is the estimator of φ

In all above cases the prior parameters chosen as (α = 2, β = 1) which yield the generated value of θ = 2 as
the true value. The true values of R(t) in t = 0.5 is obtained R(0.5) = 0.9486833. The results are summarized in
Tables 2-5.

7. Conclusion

This paper presents different methods of estimation to estimate parameter and reliability function of two parameter
generalized Pareto distribution based on a progressively type-II censored sample with random removals. Our
observations about the results are stated in the follow:

• Table 2 and 4 shows that the Bayes estimates under squared error loss function has the smallest MSE’s as
compared with other estimates (Bayes estimates under the LINEX loss function and maximum likelihood
estimator. However, maximum likelihood estimator method relatively more accurate estimators as compared
with the Bayes estimation. It is immediate to note that the MSE’s decrease as sample size n increases.

• Table 3 and 5 shows that the Bayes estimates of reliability function under squared error loss function has the
smallest estimated MSE’s as compared with Bayes estimates under the LINEX loss function and maximum
likelihood estimator. However, Bayes estimates under the LINEX loss function relatively more accurate
estimators as compared with the maximum likelihood estimator and Bayes estimates under squared error loss
function. Also, the MSE’s decrease as n increases.

• Table 2 and 4 shows that for different size n and m, the width of the Confidence interval for θ, decrease as n
and m increases.
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Table 2: Averaged values of MSEs for estimates of θ, (P = 0.1)

n m Generated Ri θ̂MLE θ̂SE θ̂LI(c = 0.1) θ̂LI(c = −0.1) %95CI
MSE MSE MSE MSE Width

10 5 (1, 1, 0, 0, 3) 2.0097 1.8414 1.3724 1.3897 (0.9811,6.1896)
0.7815 0.56781 0.6952 0.6814 5.2089

7 (0 ∗ 5, 2, 1) 2.0138 1.8847 1.5002 1.5153 (1.0779,5.0021)
0.5887 0.4639 0.5352 0.5261

20 10 (0,1,2,2,0*5,5) 2.0144 1.9222 1.6202 1.6327 (1.1790,4.2008)
0.4066 0.3419 0.3828 0.3772

15 (0,1,0*8,1,0,1,0,2) 1.9976 1.9353 1.7155 1.7250 (1.2756,3.5692)
0.2795 0.2499 0.2740 0.2708

30 20 (4,0,1,0*7 2.0150 1.9667 1.7918 1.7996 (1.3582,3.2989)
,1,0,1,0*5,1,2) 0.2007 0.1829 0.1942 0.1924

25 (0*3,1,2,0,0 2.0226 1.9832 1.8383 1.8449 ( 1.4159,3.1254)
,1,0*16,1) 0.1670 0.1542 0.1584 0.1572

40 30 (1,2,0*5,1,0,2,0,1 2.0131 1.9805 1.8576 1.8632 (1.4501,2.9838)
,0*4,1,0*4,1,0*7,1) 0.1285 0.1206 0.1260 0.1251

35 (0,0,1,0,1,0, 2.0063 1.9783 1.8717 1.8767 (1.4779,2.8804)
1,0,0,2,0*25) 0.1132 0.1074 0.1122 0.1114

Table 3: Averaged values of MSEs for estimates of the reliability function,P = 0.1

n m ŜMLE ŜS ŜL(c = 0.1) ŜLc = −0.1
MSE MSE MSE MSE

10 5 0.92483 0.93723 0.92896 0.92868
0.001604 0.001219 0.001454 0.001457

7 0.93153 0.94101 0.93576 0.93543
0.000951 0.000702 0.000842 0.000847

20 10 0.93676 0.94367 0.94107 0.94071
0.000544 0.000401 0.000471 0.000474

15 0.94029 0.94505 0.94466 0.94428
0.000305 0.000231 0.000258 0.000260

30 20 0.94298 0.94656 0.94738 0.94700
0.000188 0.000151 0.000162 0.000162

25 0.94433 0.94720 0.94875 0.94836
0.000140 0.000117 0.000125 0.000125

40 30 0.94502 0.94743 0.94945 0.94906
1.056e-04 8.948e-05 9.549e-05 9.466e-05

35 0.94537 0.94744 0.94981 0.94941
9.127e-05 7.855e-05 8.391e-05 8.286e-05
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Table 4: Averaged values of MSEs for estimates of θ, (P = 0.6)

n m Generated Ri θ̂MLE θ̂SE θ̂LI(c = 0.1) θ̂LI(c = −0.1) %95CI
MSE MSE MSE MSE Width

10 5 (4,0,1,0,0) 2.0142 1.8452 1.3753 1.3926 (0.9833, 6.2035)
0.8381 0.6058 0.7135 0.7003

7 (3,0*6) 2.0329 1.9038 1.5154 1.5307 (1.0896, 5.0564)
0.5661 0.4419 0.5089 0.49991

20 10 (7,2,1,0*7) 2.0113 1.9194 1.6179 1.6304 ( 1.1773, 4.1944)
0.3999 0.3369 0.3807 0.3750

15 (2,1,2,0*12) 1.9959 1.9337 1.7141 1.7236 (1.2745, 3.5662)
0.2752 0.2463 0.2718 0.2685

30 20 (3,3,1,0,1,2,0*14) 1.9946 1.9472 1.7741 1.7818 (1.3445, 3.2655)
0.1927 0.1776 0.1961 0.1939

25 (2,2,1,0*22) 2.0082 1.9694 1.8255 1.8320 ( 1.4059, 3.1031)
0.1597 0.1485 0.1572 0.1559

40 30 (4,2,2,2,0*26) 1.9999 1.9676 1.8456 1.8512 (1.4405, 2.9642)
0.1344 0.1269 0.1345 0.1335

35 (3,0,1,1,0*31) 2.0059 1.9780 1.8714 1.8763 (1.4777, 2.8798)
0.1204 0.1142 0.1183 0.1176

Table 5: Averaged values of MSEs for estimates of the reliability function, P = 0.6

n m ŜMLE ŜS ŜLc = 0.1 ŜLc = −0.1
MSE MSE MSE MSE

10 5 0.92450 0.93668 0.92862 0.92834
0.001708 0.001433 0.001557 0.001559

7 0.93224 0.94166 0.93648 0.93615
0.000932 0.000706 0.000830 0.000833

20 10 0.93682 0.94376 0.94113 0.94077
0.000515 0.000370 0.000442 0.000446

15 0.94021 0.94496 0.94457 0.94420
0.000316 0.000241 0.000268 0.000270

30 20 0.94246 0.94606 0.94685 0.94647
0.000195 0.000154 0.000164 0.000165

25 0.94402 0.94691 0.94844 0.94805
0.000139 0.000114 0.000121 0.000121

40 30 0.94457 0.94699 0.94899 0.94860
1.173e-04 9.869e-05 1.033e-04 1.028e-04

35 0.94526 0.94733 0.94969 0.94930
9.851e-05 8.506e-05 9.033e-05 8.934e-05
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