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Abstract

This paper considers Bayesian estimation of parameter and reliability function of Kumaraswamy-inverse Rayleigh
distribution under the different loss functions with progressively first failure censored samples. We used squared
error , minimum expected, weighted and Linex loss functions for obtaining the Bayes estimators of parameter and
reliability function. Finally, Comparisons are made between Bayes estimators under different loss functions using
simulation study.
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1. Introduction

The Kumaraswamy-inverse Weibull distribution was introduced by Shahbaz et. al [5]. This distribution is an
extension of the Inverse Weibull distribution. The Kumaraswamy-inverse Weibull distribution has a cumulative
distribution function of the form

F (x) = 1− [
1− exp

(−γλx−β
)]α

(1)

where (x, γ, λ, α, β) ∈ <+. In cumulative distribution function (1), if γ = 1 and β = 2, the resulting distribu-
tion is called the Kumaraswamy-inverse Rayleigh distribution (Hussian [6]). The cumulative distribution function,
probability density function and reliability function of Kumaraswamy-inverse Rayleigh distribution are given, re-
spectively, by

F (x) = 1− [
1− exp

(−λx−2
)]α

(2)

f(x) = 2αλx−3 exp
(−λx−2

) [
1− exp

(−λx−2
)]α−1

(3)

R(x) =
[
1− exp

(−λx−2
)]α

(4)
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where α > 0 and λ > 0 are shape and scale parameters respectively. In this article, we consider progressive first-
failure-censored samples from a Kumaraswamy-inverse Rayleigh distribution. we assumed that shape parameter β
is known and used Bayesian estimation method to estimate parameter α and reliability function of Kumaraswamy-
inverse Rayleigh distribution based on different symmetric and asymmetric loss functions.

2. A progressive first failure censoring scheme

In a life-testing experiment, Suppose that n independent groups with k items within each group are put in a life
test. R1 groups and the group in which the first failure is observed are randomly removed from the test as soon as
the first failure (XR

1:m:n:k = X1) has occurred, R2 groups and the group in which the second failure is observed are
randomly removed from the test as soon as the second failure (XR

2:m:n:k = X2) has occurred, and finally Rm(m ≤ n)
groups and the group in which the m-th failure is observed are randomly removed from the test as soon as the m-th
failure (XR

m:m:n:k = Xm) has occurred. Then X1 < X2 < · · · < Xm are called progressively first-failure-censored
order statistics with the progressive censoring scheme R. It is clear that n = m + R1 + R2 + · · ·Rm. If the failure
times of the n×k items originally in the test are from a continuous population with distribution function F (x) and
probability density function f(x), the joint probability density function for X1, X2, · · · , Xm is given by

f(x1, x2, · · · , xm) = ckm
m∏

i=1

f(xi) (1− F (xi))
k(Ri+1)−1 0 < x1 < x2 < · · · < xm < ∞ (5)

where c = n(n − R1 − 1)(n − R1 − R2 − 2) · · · (n − R1 − R2 − · · · − Rm−1 − m + 1). Note that if k = 1, the
equation (5) reduces to the joint probability density function of progressively type II censored order statistics. If
R = (0, · · · , 0),equation (5) reduces to the joint probability density function of first-failure censored order statistics.
If k = 1 and R = (0, · · · , 0), then n = m which corresponds to the complete sample, and if k = 1 and R =
(0, · · · , 0, n−m), then type II censored order statistics are obtained (See Wu and kus [1] or Wu and Huang [2]).

3. Likelihood, prior and posterior

Suppose X1 < X2 < · · · < Xm under the progressive censoring scheme R = (R1, R2, · · · , Rm) are progressively
first-failure-censored samples samples from the Kumaraswamy-inverse Rayleigh distribution which has probability
density function (3) then the likelihood function for the observed m samples can be written as follows:

L(α,X) ∝ αme−αu(xi) (6)

where u(xi) = −k
∑m

i=1(Ri + 1) ln
[
1− exp

(−λx−2
i

)]
. When parameter λ is known, we consider the natural

conjugate family of prior densities for parameter a as the following

π(α) =
ba

Γ(a)
αa−1e−bα, a, b > 0 (7)

From equations (6) and (7), the posterior distribution of α given the data X = (x1, · · · , xm)is is thus

π(α|x) =
(b + u(xi))m+a

Γ(m + a)
αm+a−1e−α(b+u(xi)) (8)

4. Bayesian Estimation

4.1. Bayes estimators under squared error loss function

The Bayes estimator of α, under the squared error loss function, is the posterior mean of the pdf given in Equation
(8) and can be found as,

α̂s.e =
m + a

b + u(xi)
(9)
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Another problem of interest is that of estimating reliability function R(t), with fixed t > 0. The Bayes estimator
of the reliability function R(t), under squared error loss function, is given by

Ŝs.e =
(

b + u(xi)
b + u(xi)− ln w(t)

)(m+a)

(10)

where w(t) = 1− exp(−λt−2).

4.2. Bayes estimators under minimum expected loss function

In Bayesian estimation, widely used loss function is a quadratic loss function given by

L(λ, λ̂) = w
(
λ̂− λ

)2

If w = 1, it reduces to squared error loss function and for w = λ−2 ,it becomes

L(λ, λ̂) = λ−2
(
λ̂− λ

)2

known as minimum expected loss function introduced by Rao Tummala and Sathe [4]. based on minimum expected
loss function The Bayesian estimator of α is given by

α̂m.e =
E(λ−1|x)
E(λ−2|x)

Therefore we obtain Bayes estimator of the parameter α as the following form

α̂m.e =
m + a− 2
b + u(xi)

. (11)

and based on minimum expected loss function The the Bayesian estimator of the reliability function R(t) is:

Ŝm.e =
(

b + u(xi) + 2 ln w(t)
b + u(xi) + ln w(t)

)(m+a)

(12)

4.3. Bayes estimators under weighted loss function

The weighted loss function is defined as

L(α̂− α) =
(α̂− α)2

α
, α̂ =

1
E(α|x)

The Bayes estimator of parameter α under weighted loss function is given by

α̂w.l =
m + a− 1
b + u(xi)

(13)

Similarly, the Bayes estimator of the reliability function R(t) under weighted loss function, is given by

Ŝw.l =
(

b + u(xi)
b + u(xi) + ln w(t)

)−(m+a)

(14)
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4.4. Bayes estimators under Linex loss function

The LINEX loss function for α can be expressed as the following proportional

L(∆) ∝ exp γ∆)− c∆− 1; γ 6= 0

where ∆ = (α̂ − α) and α̂ is an estimate of α. The Bayes estimator of α, under Linex loss function is given by
(Zellner [7])

ˆαLinex = − 1
γ

ln Eα[exp(−γα)] (15)

we obtain Bayesian estimator of the parameter α, and reliability function R(t), from (15) and (8) as the following
forms

α̂li = −m + a

γ
ln

[
b + u(xi)

b + u(xi) + γ

]
(16)

Ŝli = − 1
γ

ln



∞∑

j=0

(−γ)j

j!

(
b + u(xi)

b + u(xi)− j ln w(t)

)(m+a)

 (17)

5. Simulation study

In order to compare the estimators of parameter and reliability function of Kumaraswamy-inverse Rayleigh distri-
bution , Monte Carlo simulations were performed utilizing 2000 progressively first-failure-censored samples for each
simulations. The mean square error (MSE) is used to compare the estimators. Using the algorithm presented in
Balakrishnan and Sandhu [3], we generated progressively first failure censored samples from the Kumaraswamy-
inverse Rayleigh distribution with parameters α = λ = 2. The true value of R(t), at t = 1 is R(1) = 0.7476451 and
the prior parameters are a = 4 , b = 1. The simulation results are summarized in tables 1 and 2.

6. Conclusions

From Tables 1 and 2, it is clear that the Bayes estimates of parameter α and reliability function S = R(t), under
the LINEX loss function have the smallest estimated MSEs as compared with the estimates under squared error
loss, minimum expected and weighted loss functions. It is immediate to note that MSEs decrease as sample size n
and m increases.

References

[1] S. J. Wu and C. Kus, ”On Estimation Based on Progressive First-Failure-Censored Sampling,” Computational Statistics
and Data Analysis, Vol. 53, No. 10, pp. 3659-3670, 2009.

[2] S.J. Wu, S. R. Huang, ”Progressively first-failure censored reliability sampling plans with cost constraint,” Computa-
tional Statistics & Data Analysis, Vol. 56, Issue 6, pp. 2018-2030, 2012.

[3] N. Balakrishnan, R. A. Sandhu, ”A simple simulation algorithm for generating progressively type-II censored samples,”
The American Statistician 49, 229-230, 1995.

[4] V. M. Rao Tummala and P. T. Sathe, ”Minimum expected loss estimators of reliability and parameters of certain
lifetime distributions,” IEEE Transactions on Reliability, 27,4, 283-285, 1978.

[5] M. Q. Shahbaz, S. Shahbaz, N. S. Butt, ”The KumaraswamyInverse Weibull Distribution,” Pakistan journal of statistics
and operation research, 8(3): 479-489, 2012.

[6] M. A. Hussian and E. A. Amin, ”Estimation and prediction for the Kumaraswamy-inverse Rayleigh distribution based
on records ,” International Journal of Advanced Statistics and Probability, 2,(1), 21-27, 2014.

[7] A. Zellner, ”Bayes estimation and prediction using asymmetric loss functions,” Journal of the American Statistical
Association, 81, 446-451, 1986.



46 International Journal of Scientific World

Table 1: Estimated means and MSEs of various estimators of α

k n m R = (R1, ..., Rm) α̂s.e α̂m.e α̂w.l α̂li

MSE(α̂s.e) MSE(α̂m.e) MSE (α̂w.l) MSE (α̂li)

1 10 5 (3,2,0,0,0) 2.847335 2.214594 2.530964 2.173908
1.5246083 0.5340129 0.9192619 0.3156078

7 (3,0*6) 2.642686 2.162198 2.402442 2.132708
1.0486233 0.4517774 0.6872304 0.2913873

10 (0,...,0) 2.524530 2.163883 2.344207 2.137421
0.7685117 0.3893408 0.5438924 0.2705353

4 10 5 (3,2,0,0,0) 2.841031 2.209691 2.525361 2.168933
1.5425498 0.5492249 0.9359284 0.3233388

7 (3,0*6) 2.639475 2.159570 2.399522 2.131072
1.0312187 0.4420375 0.6739081 0.2851338

10 (0,...,0) 2.498519 2.141588 2.320053 2.119100
0.7196066 0.3661507 0.5086252 0.2539655

7 10 5 (3,2,0,0,0) 2.818108 2.191862 2.504985 2.155225
1.4931381 0.5351818 0.9059430 0.3152019

7 (3,0*6) 2.647923 2.166483 2.407203 2.137603
1.0231730 0.4316242 0.6644658 0.2778630

10 (0,...,0) 2.511919 2.153074 2.332496 2.128032
0.7573781 0.3873378 0.5376383 0.2695625

1 20 10 (1,1,...,1) 2.506057 2.148049 2.327053 2.124063
0.7390961 0.3767774 0.5234300 0.2643520

15 (2,2,1,0*12) 2.355479 2.107534 2.231506 2.094320
0.4256996 0.2511968 0.3222498 0.1954880

20 (0,...,0) 2.280428 2.090392 2.185410 2.081388
0.2996177 0.1938536 0.2373236 0.1594534

4 20 10 (1,1,...,1) 2.501284 2.143957 2.322621 2.121721
0.7016720 0.3516201 0.4924276 0.2477882

15 (2,2,1,0*12) 2.352608 2.104965 2.228787 2.091625
0.4375895 0.2617968 0.3334937 0.2017639

20 (0,...,0) 2.280359 2.090329 2.185344 2.081086
0.3083763 0.2012343 0.2453785 0.1651029

7 20 10 (1,1,...,1) 2.492238 2.136204 2.314221 2.113378
0.7410525 0.3849834 0.5287833 0.2678319

15 (2,2,1,0*12) 2.353605 2.105857 2.229731 2.092719
0.4282152 0.2539167 0.3248814 0.1967879

20 (0,...,0) 2.288809 2.098075 2.193442 2.087768
0.3283650 0.2154483 0.2623865 0.1760092
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Table 2: Estimated means and MSEs of various estimators of reliability function R(t)

k n m R = (R1, ..., Rm) Ŝs.e Ŝm.e Ŝw.l Ŝli

MSE(Ŝs.e) MSE(Ŝm.e) MSE (Ŝw.l) MSE (Ŝli)

1 10 5 (3,2,0,0,0) 0.6727000 0.6458794 0.6598265 0.6858566
0.04327193 0.05656659 0.04941108 0.04121359

7 (3,0*6) 0.6899662 0.6706404 0.6806021 0.7070712
0.03597317 0.04456047 0.04000882 0.03280836

10 (0,...,0) 0.6995957 0.6856391 0.6927793 0.7188201
0.03165453 0.03733389 0.03436473 0.02775752

4 10 5 (3,2,0,0,0) 0.6734790 0.6467316 0.6606412 0.6869254
0.04318256 0.05648195 0.04932247 0.04111850

7 (3,0*6) 0.6901789 0.6709014 0.6808375 0.7072558
0.03578172 0.04430803 0.03978939 0.03259602

10 (0,...,0) 0.7020048 0.6882935 0.6953067 0.7215884
0.03065364 0.03613722 0.03327118 0.02663498

7 10 5 (3,2,0,0,0) 0.6755406 0.6491352 0.6628641 0.6893640
0.04231564 0.05532197 0.04832181 0.04015553

7 (3,0*6) 0.6892219 0.6698657 0.6798422 0.7059074
0.03593251 0.04448401 0.03995239 0.03271775

10 (0,...,0) 0.7008612 0.6870123 0.6940970 0.7204047
0.03126968 0.03687913 0.03394666 0.02734437

1 20 10 (1,1,...,1) 0.7013698 0.6875728 0.6946306 0.7210210
0.03104680 0.03660561 0.03369999 0.02711539

15 (2,2,1,0*12) 0.7143932 0.7053184 0.7099280 0.7366496
0.02552196 0.02872237 0.02707156 0.02086443

20 (0,...,0) 0.7210782 0.7143165 0.7177384 0.7447080
0.02287209 0.02508610 0.02395220 0.01787462

4 20 10 (1,1,...,1) 0.7016120 0.6878760 0.6949017 0.7210937
0.03069341 0.03616738 0.03330689 0.02669613

15 (2,2,1,0*12) 0.7147744 0.7057150 0.7103168 0.7371668
0.02549235 0.02869704 0.02704381 0.02083327

20 (0,...,0) 0.7211487 0.7143839 0.7178074 0.7448684
0.02293052 0.02515304 0.02401471 0.01794961

7 20 10 (1,1,...,1) 0.7028376 0.6891592 0.6961560 0.7228813
0.03065798 0.03615785 0.03328276 0.02670291

15 (2,2,1,0*12) 0.7146062 0.7055433 0.7101468 0.7369199
0.02547412 0.02867081 0.02702186 0.02081412

20 (0,...,0) 0.7203858 0.7135744 0.7170217 0.7440087
0.02328193 0.02554478 0.02438564 0.01832605




