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Abstract

In this paper, the homotopy perturbation method (HPM) is applied for calculating the weak deflection angle and the perihelion precession
angle of planetary orbits in the gravitational field of Bocharova-Bronnikov-Melnikov-Bekenstein (BBMB) black hole. Follow the procedure
of HPM, we obtain the approximate solutions for the null and time-like geodesics in the gravitational field of BBMB black hole. On the basis
of these solutions and the general formulae for the angle of deflection and the perihelion precession angle, derived by the author earlier via
HPM, the corresponding angles for the BBMB black hole are obtained and compared with the similar angles in Schwarzschild spacetime.
Notably that if the deflection angle obtained in this article using the HPM confirms the results of other researchers, then the perihelion
precession angle obtained here for the first time can be compared with those known for a classical non-rotating static black hole.
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1. Introduction

Both the deflection of light and the perihelion precession of orbits in the gravitational fields of compact objects are the first and key predictions
of General Relativity (GR). Until now, these effects play a significant role in the study of problems related to the gravity and astrophysics,
and continue to provide a powerful tool for studying many compact objects in our universe [1]-[6]. Since light deflection and perihelion
precession have historically been associated with the Solar System [7, 8], in the recent decades, much more attention has been paid to the
study of light deflection and perihelion precession in the gravitational fields of various compact astrophysical objects.
As the weak gravitational lensing provides a way to find the mass of astronomical objects without requiring about their composition or
dynamical states, many authors study gravitational lensing by various astrophysical objects using various methods proposed recently. Let us
mention just a few of the latest articles on this topic. For example, the equations of motion of the massive and massless particles in the
Schwarzschild geometry is studied by using the Laplace-Adomian Decomposition Method in [9], that shows the obvious success of this
method in obtaining series solutions to a wide range of strongly nonlinear differential equations.
Also, Gibbons and Werner proposed a new method to calculate weak deflection angle using the Gauss-Bonnet theorem [10]. This method was
applied to the Rindler modified Schwarzschild black hole, and the weak deflection angle was obtained in [11]. In Ref. [12], the Gauss-Bonnet
theorem is also applied to the study of light rays in a plasma medium in a static and spherically symmetric gravitational field and to the study
of timelike geodesics followed for test massive particles in a spacetime with the same symmetries. The possibility of using the theorem
follows from a correspondence between timelike curves followed by light rays in a plasma medium and spatial geodesics in an associated
Riemannian optical metric. A similar correspondence follows for massive particles. The calculation of the bending angle using the trajectory
equation based on geometric optics is also provided in [13].
Wormholes also cause gravitational lensing effects. Gravitational lensing by wormholes were investigated first by the authors of [14, 15].
The weak gravitational lensing for a black hole and wormhole as well in massive gravity has been studied in the paper [16]. A new analytic
approximation describing light bending in Schwarzschild metric, when fast accurate calculations of light deflection are required, has been
proposed in Ref.[17]. The features of gravitational lensing by spherically symmetric wormholes, when they are not symmetric with respect
to their throats, were considered in [18].
The perihelion precession in GR and some modified theories of gravity were recently studied in [19]-[26]. The perihelion precession of
planetary orbits is estimated for different gravity theories in string-inspired models by the authors of [27]. Moreover, a way to obtain
information about higher dimensions from observations by studying a brane based spherically symmetric solution is considered for the
classic tests of GR in [28]. The analytical computation of the Mercury perihelion precession in the frame of relativistic gravitational law and
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comparison with GR relativity is presented in [29]. In order to study the defection and gravitational lensing of null and timelike signals in
the Kiselev spacetime in the weak field limit, the authors of [30] used a perturbative method previously developed for asymptotically flat
spacetimes.
Recently, the authors of [6] derived the deflection angle of light in a plasma medium by BBMB black hole using the Gibbons and Werner
method (Gauss-Bonnet method). They obtained the Gaussian optical curvature and implemented the Gauss-Bonnet theorem to explore the
deflection angle for spherically symmetric spacetime of BBMB black hole [31, 32].
In the present paper, we investigate the perihelion precession and deflection of light in the spherically symmetric spacetime of BBMB
black hole using the homotopy perturbation method [33]-[35], which is quite efficient in many nonlinear problems (see, e.g., [36]-[40]). In
our woks [41, 42], by using HPM we have obtained formulas for calculating the angles of light deflection and perihelion precession from
approximate solutions for geodesic equations, that give a better approximation than those often used in such problems.

2. Geodesic equations in BBMB spacetime

Here, we mostly follow Ref.[5] in representing the main equations of geodesic motion in a spherical symmetry spacetime. According to
General Relativity [1, 5], in the case of general spherically symmetric spacetime, its stationary line element can be represented by

ds2 =− f (r)dt2 +
dr2

h(r)
+ r2(dθ

2 + sin2
θdϕ

2). (1)

Since the perihelion precession and deflection of light are usually treated as the time-like and null geodesics in spacetime [1], respectively, let
us consider the geodesics γ(τ) in the above spherically symmetric spacetime. We set the geodesic γ(τ) expressed in the spherical coordinates
xµ = (t,r,θ ,ϕ) as xµ (τ), which satisfy

d2xµ

dτ2 +Γ
µ

νσ

dxν

dτ

dxσ

dτ
= 0.

The geodesic γ(τ) can be obtained by solving the above equation. However, taking into account the symmetry of spacetime (1), one could
use the following simple way to obtain the geodesic γ(τ).
First, we can find that one component of the geodesic γ(τ) can always be chosen as θ(τ) = π/2, which means that the geodesic can always
be chosen to lay in the equatorial plane of the spherically symmetric spacetime. Thus, t = t(τ), r = r(τ), θ = π/2, ϕ = ϕ(τ). Let us denote
the tangent vector of geodesic γ(τ) as U µ ≡ dxµ/dτ . For the time-like geodesic, we chose τ to be the proper time . Hence, from (1) we can
obtain

f (r)
( dt

dτ

)2
−h−1(r)

( dr
dτ

)2
− r2

(dϕ

dτ

)2
=−k, (2)

where we have used θ = π/2, and k = 1 corresponds to the time-like geodesic, while k = 0 is the null geodesic.
Second, it could be noted that ξ a = (∂/∂ t)a and ψa = (∂/∂ϕ)a are two Killing vectors in the spherically symmetric spacetime (1). Therefore,
there are two conserved quantities along the geodesic γ(τ), the total energy and the angular momentum per unit mass, as follows

E =−gabξ
aUb = f (r)

dt
dτ

, L = gabψ
aUb = r2 dϕ

dτ
. (3)

After inserting (3) into (2), one could obtain( dr
dτ

)2
=

h(r)
f (r)

E2 −h(r)
(

k+
L2

r2

)
. (4)

This equation contains only one function r(τ), and it could be solved in principle. Then, after inserting the solved r(τ) into (3), the rest
components t(τ) and ϕ(τ) of geodesic could be finally obtained.
However, it should be noted that the perihelion precession as well as the deflection of light are usually related to the geodesics orbits, i.e.
r = r(ϕ). Therefore, it is convenient to rewrite equation (4) with the help of (3) as( dr

dϕ

)2( L
r2

)2
=

h(r)
f (r)

E2 −h(r)
(

k+
L2

r2

)
. (5)

It is well known that the coordinate u ≡ 1/r is more convenient than r to study the geodesic equations in the spherically symmetric
gravitational fields. Thus, the main equation could be simply obtained from equation (5) by converting r into u:( du

dϕ

)2
=

h(u)
f (u)

(E
L

)2
−h(u)

( k
L2 +u2

)
.

At last, differentiating this equation with respect to ϕ , we get the second-order geodesic equation in the following form

d2u
dϕ2 =

E2

2L2
d
du

[
h(u)
f (u)

]
−h(u)u− 1

2

( k
L2 +u2

)dh(u)
du

. (6)

The BBMB black hole in a static and spherically symmetric form is given as (1) with the following metric functions [6]

f (r) = h(r) = 1− 2M
r

+
M2

r2 , (7)
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where M is a mass of black hole. According to the latter, f (u) = h(u) = 1−2Mu+M2u2 and the geodesic equation (6) takes the following
form:

d2u
dϕ2 +u = k

M
L2 (1−Mu)+3M u2 −2M2u3. (8)

Thus, first of all we should approximately solve this equation in the case of k = 0 for the null-geodesic, and for the case of time-like
trajectory, when k = 1. It is easy to see that the BBMB space-time metric coefficients defined by Eq.(7) can be formally obtained from the

Reissner-Nordström metric f (r) = h(r) = 1− 2M
r

+
Q2

r2 by replacing Q → M. This fact allows to use the results of our works [41, 42] to
investigate the problems stated above for the BBMB black hole.

3. On HPM briefly

In the next sections, we are going to apply HPM for studying the propagation of a light ray and the orbital motion in the BBMB space-time.
For briefness, since the HPM has now become standard, we recall here only the basic ideas of the HPM [33, 34]. Considering equation (8) as
the specific case of the following non-linear equation

L(u)+N(u) = 0

for the function u(ϕ), where ϕ ∈ Φ, L and N are the linear and non-linear terms, we construct a homotopy u(ϕ, p) : Φ× [0,1]→ IR as
follows

H(u, p) = (1− p)[L(u)−L(u0)]+ p [L(u)+N(u)] = 0,

where p ∈ [0,1] is an embedding parameter, and u0 = u0(ϕ) is an initial approximation. Hence, one can see that changing p from 0 to 1 is
the same as changing H(u, p) from L(u)−L(u0) to L(u)+N(u), which are called homotopic. By applying the perturbation procedure, we
assume that the solution of (8) can be expressed as a series in p, as follows:

u(ϕ) = u0(ϕ)+ pu1(ϕ)+ p2u2(ϕ)+ ... . (9)

When we put p → 1, then equation L(u)+N(u) = 0 corresponds to (8), and (9) becomes the approximate solution of (8), that is u(ϕ) =
limp→1 u = u0(ϕ)+u1(ϕ)+u2(ϕ)+ ....
It should be noted that the series (9) is convergent for most cases. However, the convergent rate depends upon the nonlinear operator
A(u) = L(u)+N(u). Sometimes, even the first approximation is sufficient to obtain the exact solution [33]. As it is emphasized in [34] and
[35], the second derivative of N(u) with respect to u must be small, because the parameter p may be relatively large, i.e. p → 1, and the
norm of L−1∂N/∂u must be smaller than one, in order that the series converges.

4. Computation of deflection angle in BBMB spacetime using HPM

First of all, we intend to obtain an approximate solution of equation (8) for a light beam using HPM. The null-geodesic equation follows
from Eq. (8) fodr k = 0 in the form

d2u
dϕ2 +u = 3M u2 −2M2u3. (10)

In the absence of mass (M = 0), the obvious analytic solution for (10) is a straight line expressed in polar coordinates,

u0(ϕ) =
1
b

sinϕ, (11)

where b is a constant impact parameter.
Assuming that the unperturbed equation (10) should have solution (11), consider the following homotopy

u′′+u− p
(
3Mu2 −2M2u3)= 0, (12)

where p ∈ [0,1].
By substituting (9) into equation (10) and collecting together all terms with the same degree of the embedding parameter p, one can transform
this equation into another series in p. Equating each coefficient of this series equal to zero yields a set of linear ordinary differential equations
for u0(ϕ),u1(ϕ),u2(ϕ), etc.:

p0 : u′′0 +u0 = 0,

p1 : u′′1 +u1 −3Mu2
0 +2M2u3

0 = 0,

p2 : u′′2 +u2 −6Mu0u1 +6M2u2
0u1 = 0,

. . . . . . . . . . . .


(13)

According to equation (11), the initial conditions for u0(0) and ui(0) can be chosen as follows

u0(0) = 0, u′0(0) =
1
b
, ui(0) = u′i(0) = 0, (14)
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where i ≥ 1.
The system of linear equations (13) subject to initial conditions (14) can be easily solved, giving

u(ϕ) =
1
b

sinϕ +
M
b2

(
1− cosϕ

)2
− M2

4b3

[
(cos2

ϕ +2)sinϕ −3ϕ cosϕ

]
(15)

for the simplest approximation of solution u ≈ u0 +u1.
One can see that solution (15) satisfies the initial condition u(0) = 0. Therefore, the deflection angle of light β can be obtained from the
equation u(π +β ) = 0, using the small angle approximation

sin(π +β )≈−β , cos(π +β )≈−1. (16)

Using the approximation (16) in formula (15), one can obtain the following expression for the deflection angle in BBMB space-time:

β ≈ 4M
b

− 3πM2

4b2 . (17)

We should note that the recent article [6] contains the investigation of deflection angle by BBMB black hole in plasma medium by using
Gauss-Bonnet theorem. The deflection angle obtained there for photon beams moving in a homogeneous plasma medium is equal to

β ≃ 4M
b

+
2Mω2

e
bω2

∞

− 3πM2

4b2 , (18)

where ωe and ω∞ are electron plasma frequency and light frequency calculated by an observer at infinity respectively. Since the effect of
plasma can be removed if (ωe = 0), or (β = ωe/ω∞ → 0), the angle (18) reduces to vacuum case, and it is coincides with our result (17).
Note that the accuracy of the approximation formula for the deflection angle given by Eq. (17) is not very high, since a rather rough
approximation (16) was used in its derivation. In our work [42], we have derived the formula for finding the light deflection angle using
HPM.
For this end, let us consider equation (15) as u(ϕ) = (1/l)sinϕ +(1/l)U(ϕ), where the first term is the straight path of light without
disturbing by gravity, that is u0(ϕ), and U(ϕ) = l [u1(ϕ)+ u2(ϕ)+ ...]. Then, the deflection equation, u(ϕ) = 0, becomes as follows
sinϕ +U(ϕ) = 0. By solving this equation for ϕ = π +β via HPM in [42], the deflection angle was obtained as follows:

βHPM =U(π)

(
1+U ′(π)+U ′2(π)+

U(π)U ′′(π)

2
+

U2(π)

6

)
. (19)

Taking the order of accuracy represented by equation (15), let us specify the magnitude of the deflection angle in the case of BBMB black
hole. For the approximate solution (15), we can write that

U(ϕ) =
M
b

(
1− cosϕ

)2
− M2

4b2

[
(cos2

ϕ +2)sinϕ −3ϕ cosϕ

]
. (20)

Substituting ϕ = π into U(ϕ),U ′(ϕ) and U ′′(ϕ), we get

U(π) =−U ′′(π) =
4M
b

− 3πM2

4b2 , U ′(π) = 0, (21)

according to equation (20). Using equations (19) and (21), we get the following angle of deflection in the gravitational field of BBMB black
hole

βBBMB =

(
4M
b

− 3πM2

4b2

)
×
[

1− 16M2

3b2 +
2πM3

b3 − 3π2M4

16b4

]
. (22)

At the same time, the best approximation for the deflection angle in Schwarzschild spacetime obtain via HPM earlier in [42] is given by

βSchw =

(
4M
b

+
15πM2

4b2

)
×
[

1+
8M2

3b2 − 10πM3

b3 +
(

64− 75π2

16

)M4

b4

]
. (23)

It can be seen from Fig.1 that the angle of light deflection by the BBMB black hole βBBMB determined by equation (22) increases with
increasing M/b, but more slowly than it increase according to equation (17). The angle βBBMB grows even more slowly compared to βSchw
and compared to the simplest approximation β0 = 4M/b.

5. Computation of precession angle in BBMB spacetime using HPM

For the case of time-like trajectory in BBMB space-time, when k = 1, the geodesic equation (8) becomes as follows

d2u
dϕ2 +

(
1+

M2

L2

)
u =

M
L2 +3u2 M−2M2u3. (24)

Note that the corresponding equation in the case of Newton’s gravity of a point mass M,

d2u0

dϕ2 +u0 =
M
L2 , (25)
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Figure 1: Plots of the deflection angle βBBMB versus the parameter M/b given by Eq.(22) (solid line) and Eq.(17) (dash line), compared to βSchw in Eq.(23)
(dash-dot line) and the simplest β0 = 4M/b (dot line).

the analytical elliptical solution of which has already been known as

u0(ϕ) =
M
L2 (1+ ecosϕ), (26)

where e ∈ (0,1) is the orbital eccentricity.
Now consider the HPM solution of the equation (24). For this purpose, we suppose the following homotopy

u′′+u− M
L2 + p

(M2

L2 u−3Mu2 +2M2u3
)
= 0, (27)

where p ∈ [0,1]. According to (25) and (26), the initial conditions for u0(0) and ui(0) can be chosen as follows

u0(0) =
M
L2 (1+ e), u′0(0) = 0, ui(0) = u′i(0) = 0, (28)

where i ≥ 1. Substituting (9) into equation (27), we get

p0 : u′′0 +u0 −
M
L2 = 0, (29)

p1 : u′′1 +u1 +
M2

L2 u0 −3Mu2
0 +2M2u3

0 = 0, ‘ (30)

. . . . . . . . . . . . ‘

where the simplest approximation is taken. For the approximate solution u(ϕ) = u0(ϕ)+u1(ϕ), the set of linear equations (29), (30) with
the initial conditions (28), can be easily solved, giving

u(ϕ) =
M
L2 (1+ ecosϕ)+

M
L2 U(ϕ), (31)

where

U(ϕ) =
M2

L2

[
2+2e2 −2(1+2e2)

M2

L2 +
(7

6
− (4+ e2)

M2

4L2

)
3eϕ sinϕ

−
(

2+ e2 +(e3 −8e2 −8)
M2

4L2

)
cosϕ −

(
1−2

M2

L2

)
e2 cos2

ϕ +
M2

4L2 e3 cos3
ϕ

]
(32)

is the differentiable correction function to the Keplerian orbit (26).
By using HPM, the formula for the precession angle is obtained in [41] from the maximum condition u′(ϕ) = 0 in the position of perihelion.
Applying this condition to equation (31), one can see that the following equation

sinϕ − e−1U ′(ϕ) = 0 (33)

must be solved subject to the unperturbed solution ϕ = 2π .
It is clear that this equation could be approximately solved using the assumption that the precession angle α is much smaller compared to 2π ,
i.e. using the approximate equalities sin(2π +α)≈ α , cos(2π +α)≈ 1 and the similar ones.
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Figure 2: Plots of the precession angle αBBMB versus the parameter M/L given by Eq.(36) with e = 0.09 (solid line), and e = 0.99 (point line), compared to
αSchw given by Eq.(37) with e = 0.09 (dash line) and e = 0.99 (dash-dot line).

Nevertheless, when the need the greater accuracy, one has to take into account not only linear terms but also the higher degrees of α in
expansion of U ′(2π +α) in the power series. In our paper [41], using HPM, we derived the following formula

αHPM = e−1U ′(2π)

(
1+ e−1U ′′(2π)+ e−2

[
U ′′2(2π)+

U ′(2π)U ′′′(2π)

2
+

U ′2(2π)

6

])
. (34)

Using the approximate solution (31) and (32), one can get all terms in equation (34), for example,

U ′(2π) = 7πe
M2

L2 −3πe(4+ e2)
M4

2L4 . (35)

With the help of (34) and (35), one can easily obtain the angle of the orbit precession per revolution in the minimum degree of approximation
as

αBBMB = 7π
M2

L2 −3π(4+ e2)
M4

2L4 . (36)

Note that in [41] we obtained the following angle of precession by Schwarzschild black hole in HPM approximation:

αSchw = 6π
M2

L2

[
1+

3(1+ e)2

e
M2

L2

]
. (37)

It is seen from Fig.2 that the precession angle αBBMB in the space-time of BBMB black hole monotonically increases with the growth of the
parameter M/L. Moreover, the dependence of αBBMB on the orbital eccentricity given by equation (36) is rather weak. This is illustrated
for e = 0.09 and e = 0.99. Furthermore, αBBMB is compared to the precession angle αSchw given by equation (37) with the same values of
eccentricity.

6. Conclusions

Thus, in this work we have provided the analytical computation of the deflection of light and the perihelion precession in the gravitational
field of BBMB black hole spacetime with the help of HPM. First, we have applied HPM for solving the geodesic equations in the spacetime
of BBMB black hole. More specific, we have followed the simple procedure of HPM obtained the approximate solutions for the null and
time-like geodesics in the gravitational field of BBMB black hole.
Then, on the basis of the obtained solutions and the general formulae for the angle of deflection and the perihelion precession angle, derived
by the author earlier via HPM, the corresponding angles for the BBMB black hole are obtained and compared with the similar angles in
Schwarzschild spacetime. As a result, in the spacetime of BBMB black hole we have obtained the light deflection angle βBBMB given by Eq.
(22) and the perihelion shift per revolution αBBMB given by Eq. (36). Additionally, we have also demonstrated the graphical behavior of
deflection angle and the perihelion precession by BBMB black hole.
In conclusion, it could be noted that formulas (19) and (34) for the approximate calculation of the deflection and precession angles,
respectively, are better to applied to the exact particle trajectories which could be obtained by some method (see, for example, [43, 44] and
references therein). Unfortunately, it is most often not possible to find suitable exact solutions of geodesic equations in functions, the analysis
of which is rather simple. However, the study of this issue is already beyond the scope of this article.
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