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Abstract

The main topic of this study is the modelling and verification of biological systems using ω-automata. This work
focuses on the protein folding problem and the infinite behaviour it features in many cases. Specifically, stochastic
computational models with infinite input are used in this paper’s approach and indicative aspects of a biological
problem are presented using both ω-automata and probabilistic Büchi automata (PBAs), making a novel attempt
to establish their use in reasoning about biological processes. Necessary preliminary definitions and background
towards this direction are provided. Finally, the pros and cons of each model are shown through examples. Overall,
this work contributes by combining for the very first time PBAs with real biological mechanisms, with indicative
examples, both with PBAs and NBAs (non-deterministic Büchi automata).
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1. Introduction

It is a fact that many abstract mathematical models of computation are studied in the theory of computation. Some
of them include mechanisms, such as state machines (e.g. Turing machines, automata, etc.). Computer scientists
study these abstract machines because of their simplicity in formulation and analysis, aiming to prove theories and
results. Besides, any problem that can be solved (or decided) by a Turing machine can also be solved by a computer.

Apart from its physical description, computational theory deals with issues of computability and complexity of
different systems, as well as of various natural and biological processes. In this paper we assume that the reader is
familiar with basic notions from the theory of computation. Nevertheless, for an overview in automata theory and
theory of computation we refer the reader to [1, 2, 3]. In general, variants of probabilistic automata are frequently
used in various domains such as pattern recognition, signal processing etc.

Automata with infinite input are applicable in many fields, mainly in the verification of concurrent systems and
reasoning about infinite systems (infinite games, biological systems etc.). In addition, decision problems for certain
logics use notions of this type of automata. Similarly to their classic counterparts, automata on infinite sequences
can be categorized into different classes according to either their branching mode or the acceptance condition under
which they operate.

Verification of reactive and concurrent systems or reasoning about biological processes [4] are some of the research
regions where one can meet these mechanisms. In biomolecular level, streams of events are omnipresent and they
are vital for the well-being of the whole organism. Our world is full of example systems with non-terminating
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behaviour, not only in the physical level but also in the digital one. Life sciences study them trying to shed more
and more light on various aspects of these phenomena. For example, such systems may be operating systems,
biological processes etc. These systems have to undergo a computation process, either for their behaviour modelling
or the use of them as computation tools themselves [5, 6].

In this work we try to typically formulate the intrinsically infinitary properties of specific biological structures.
At first, we make an introduction to our concept, presenting the basic notions and definitions. We recall notions
from the standard automata theory and then we proceed to some more advanced concepts. In short, we give
the definitions of the deterministic (and non-deterministic) automaton and the corresponding ω-automaton. We
explicitly state the most known acceptance conditions regarding the ω-automata and we primarily focus on the
Büchi condition. Then we present the procedure proteins follow to fold and create their structure in an abstract
level, concentrating to the formation of their primary and secondary structure.

This article begins with a review of the most relative literature, then in Section 3 the definitions needed for
smooth transition to our main contribution are presented, which will be described and discussed thoroughly in
Section 5. Next, Section 4 is devoted to the protein folding problem and its analogy with a computation concept.
Discussion on our proposed model will be given in Section 5 where we present our approach in the modelling and
verification of a biological problem in a novel way, using notions from the stochastic computation and ω-automata.
Finally, in the last section we try to stimulate future work towards this direction with thoughts and conclusions
derived from our approach.

2. Related work

Finite automata with infinite input is not a new concept. On the contrary, the first results were reported during the
1960s by notable researchers (Büchi, Rabin, McNaughton and others). In their works, especially in [7, 8, 9, 10], the
connection between automata theory and logic emerged with plenty of surprising and useful results. Specifically,
Büchi showed the equivalence between ω-automata and the monadic second-order logic of one successor (M1S in
short) [7, 8]. These studies gave birth to a wealth of results and led to the formation of scientific branches, such as
model checking, program verification etc. (e.g. see [11]).

Büchi automata were proposed in [7, 8] and a fine overview of them can be found in [12, 13, 14, 15, 16] by
Thomas and Thomas et al. In [7] Büchi acceptance condition is discussed, while later, Muller and Rabin acceptance
conditions (and the so-named ω-automata) were proposed. In [17] McNaughton showed that the above models
are equivalent among themselves, both under the deterministic mode and the non-deterministic one and they
all recognize the same class of languages, namely the ω-regular languages. Exception to this rule constitute the
deterministic Büchi automata that are less powerful since there are ω-regular languages that are not recognized by
them.

Vardi through [18, 19, 20, 21] has also some notable results. In [12, 13] there are elegant presentations of the
main results on infinite computation and ω-automata, with additional results and theorems. The majority of these
results lays out of the scope of our work, although anyone interested in the subject is encouraged to go over them.
Besides these traditional uses of automata with infinite input, in [22] there is a novel use of Büchi automata in the
querying of Linked Data (the hint in this work is that the authors took advantage of the constantly expanding web
of linked data that shares a lot of similarities with infinite inputs)

As far as the probabilistic variants of the simple finite automata are concerned, they were introduced in [23],
whereas [24] contains an extensive overview of them. Probabilistic automated verification is also discussed in details
in [25, 26, 27]. A PFA (abbreviation for probabilistic finite automaton) can be seen as a normal Markov chain,
having accepting behaviour rather than just transition-attached probabilities. Obviously, the transition matrix in
the case of a simple PFA is basically a stochastic matrix. More recently, in [28] Gimbert et al. presented a solid
review of open problems on probabilistic automata regarding their power and decidability.

The past decade, Baier et al. proposed the probabilistic version of Büchi automata, investigating in depth
problems concerning the efficiency, expressiveness and decidability of these models of computation, producing
prominent results and leaving ample space for future work on relevant logic issues and applications of them in
both theoretic and handy implementations [29, 30, 31, 32, 33, 34]. They showed that the accepted language of
a probabilistic ω-automaton can be defined by assigning a condition on the acceptance probability for the input
words, providing three distinct probability semantics. In additions, they proved that probabilistic automata with
Büchi acceptance are more expressive than non-deterministic ω-automata. Recently, Weidner in [35, 36] proposed
a corresponding logic to the probabilistic extension of Büchi automata.

The fact that biological functionalities and biological systems have inherited infinite behaviour [37, 38] indicates
them as ideal candidates for use and test of the theories and methodologies regarding ω-automata and infinite
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computation. This observation may have a two-fold meaning. On one hand, it could mean that particular biological
systems can act as computing devices or on the other hand, that classic infinite computational models, such as Büchi
automata, can be applied to describe and model these bio-systems. For example, in [39], Jha et al. offered a novel
algorithm for statistical Model Checking using Bayesian Sequential Hypothesis Testing, with many advantages over
other methods from the literature.

In [40], Freund et al. extended the well-established P systems [41] to act as devices with infinite sequence inputs.
In [42] Petre followed the same rationale to introduce infinity in the molecular automata [43], a step to the DNA
and molecular computing [5, 6]. In particular, Petre modelled the input of the Watson-Crick automaton as a DNA
sequence with infinite length, in contrast to the standard variants that accept (or reject) words or objects of finite
length. A variant of automata (specifically of P automata) was used to describe an actual biological model of
mitochondrial fusion was described in [44].

In [45] Li and Daggett discussed the difficulties of modelling and controlling the folding procedure providing
indicative simulation results. In particular, they highlighted the use of transition states in modelling protein
folding/unfolding. Protein folding and protein architecture are covered in [46, 47, 48, 49, 50], as well. Shen et
al. introduced SABIC, a novel method for protein structure alignment based on the internal coordinates (i.e.
bond lengths, bond angles and torsion angles) of structure representation with prosperous experimental results
on benchmark datasets [51]. Structural genomics is a term describing the systematic attempt to determine the
structures of proteins representing every possible fold [52, 53].

The protein folding procedure can be simulated using several methods, such as molecular dynamics and Monte
Carlo simulations [54]. In [55] there is a fine review on the use of stochastic hidden Markov processes in bioinfor-
matics. Finally, more recently in [56], an alternative feature selection based method was proposed to predict protein
structural classes.

In our work we describe and characterize infinitary properties of biological systems. The main contribution of
this paper lies on the novel description of the protein folding process and structure using notions from automata
theory and particularly standard and probabilistic Büchi automata along with ω-regular expressions. We present
our proposed framework using detailed examples that show the expressing power of probabilistic Büchi automata
over the standard ones.

3. Preliminary definitions

In this Section we provide the necessary definitions thar are vital for the comprehension of our proposed approach.
At first, we will briefly recall the definitions of the simple, standard automata (deterministic and non-deterministic
automata, DFA and NFA respectively). Then, the probabilistic extension of them follows. Afterwards, it is turn
of the ω-automata and the acceptance conditions that govern them, focusing on the Büchi condition. We mention
the rest of the known acceptance modes to complete the description. Later, we provide the definitions of the
probabilistic Büchi automata.

Definition 3.1 In short, a deterministic finite-state automaton (DFA) is a tuple (Q, Σ, δ, q0, F) where

1. Q is a finite set of states,

2. Σ is a finite set of input symbols (alphabet),

3. δ : Q × Σ −→ Q is the transition function,

4. q0 ∈ Q represents the initial state and

5. F ⊆ Q is the set of accepting states.

In the same manner one can define the non-deterministic finite automata (NFA), simply by altering the branching
mode. In this case we have a different transition function; the new one is the δ : Q × Σ −→ P(Q), where P(Q) is
the powerset of Q. DFA and NFA are completely equivalent in expressiveness [57].

The definition of the probabilistic finite automaton (PFA) is quite similar to the NFAs except from the fact that
transitions are weighted with a probability measure.

Definition 3.2 A probabilistic finite automaton (PFA) is a tuple (Q, Σ, δ, q0, F) where

1. Q is a finite set of states,
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2. Σ is the alphabet,

3. δ : Q × Σ −→ D(Q) is the transition function, where D(Q) is the set of all the probability distributions of
the state set Q,

4. q0 ∈ Q represents the initial state and

5. F ⊆ Q is the set of accepting states.

Just like every stochastic system, the sum of the probabilities for every outgoing transition of every read symbol
α must be equal to 1, that is

|Q|∑
i=1

pi(q,α) = 1

and it is obvious that every probability pi takes values from the set [0,1],

δ(q,α,q’) ∈ [0,1], for every q ∈ Q and α ∈ Σ.

The set of languages recognized by probabilistic automata is called stochastic languages, having as a subset
the class of the regular languages. Moreover, in the case of the probabilistic computation one has to define the
probability semantics under which the automaton accepts or rejects according to the sum of the probabilities of the
computation. More about the probabilities semantics will be mentioned in the Section where our main contribution
lies (i.e. Section 5). The class of languages accepted by PFAs can be defined as

LA(λ) = { w ∈ A∗ | PA(w) ≥ λ },

where 0 ≤ λ ≤ 1 is the probability cut-point [23].
An ω-automaton is an extension of the NFA running on infinite, rather than finite, input strings [13, 12, 15, 21].

Such automata do not terminate their computation, which is obvious since they read infinite input sequences. Thus,
they possess a variety of acceptance conditions besides a set of accepting states. For simplicity reasons we provide
the definition of the non-deterministic ω-automaton, since its difference to the deterministic version is akin to the
difference between NFAs and DFAs.

Definition 3.3 An ω-automaton is a tuple (Q, Σ, δ, q0, Acc) where

1. Q is a finite set of states,

2. Σ is the input alphabet,

3. δ : Q × Σ −→ P(Q), where P(Q) is the powerset of Q,

4. q0 ∈ Q stands for the initial state and

5. Acc is an acceptance condition.

The acceptance condition Acc declares which of the infinite runs are accepted by the state-machine. The most
common and well-established of them are (see in [13]):

Büchi condition Automaton accepts the runs ρ for which In(ρ) ∩ F ̸= ∅ for a set F ⊆ Q, meaning that the states
in F appear infinitely often during the run ρ.

Streett condition An infinite run ρ = q0q1q2. . . is called Streett accepting if for each i ∈ {1, . . . , i} we have:
In(ρ) ∩ Fi = ∅ ∨ In(ρ) ∩ Ei ̸= ∅, with Fi, Ei ∈ Q.

Rabin condition the dual of the Street condition [9, 10].

Muller condition Automaton accepts the runs ρ for which In(ρ) ∈ F, that is the set of states occurring infinitely
often in the run ρ forms a set in F.
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A Büchi automaton is an ω-automaton under the Büchi acceptance condition. Thus, it accepts an infinite input
sequence if and only if there exists a run of the automaton that visits at least one of the final states infinitely often.
Non-deterministic Büchi automata recognize the ω-regular languages, whereas the same class is, also, recognized
by Muller, Rabin and Streett automata, as well.

Probabilistic Büchi automata (PBA) have a syntax similar to the PFAs. In particular, they are finite-state
automata where for each state q and each input symbol of an alphabet, a probability distribution specifies the
probabilities for the successor states. It is obvious that they are governed by an acceptance condition like standard
ω-automata. Their definition follows [30, 31].

Definition 3.4 A probabilistic Büchi automaton (PBA) is a tuple (Q, Σ, δ, q0, F) where

1. Q is a finite set of states,

2. Σ is the automaton’s alphabet,

3. δ : Q × Σ −→ D(Q) is the transition function, where D(Q) is the set of all the probability distributions of
the set of states Q,

4. µ represents the initial distribution for the starting state,

5. F ⊆ Q is the set of accepting states.

The acceptance condition in this case is the Büchi condition. Like in the definition of the PFAs, the standard

probability laws apply for PBAs (
|Q|∑
i=1

pi(q,α) = 1 and δ(q,α,q’) ∈ [0,1] ).

4. The protein folding problem

In this part of our work we briefly discuss some biological phenomena with infinite traces, such as the protein
folding mechanism and the mitochondria life-cycle, which can be characterized and described with elements of
infinite computation (e.g. their population stability mechanisms). Abnormalities in these functions cause or boost
potential diseases [58]. Proteins are biological molecules assembled from long chains of amino acids and each one of
them has its own unique amino acid sequence. Proteins are responsible for a lot of vital biological duties, mainly
acting as enzymes that catalyse biochemical reactions and assisting metabolism. In addition, they assist the DNA
replication, molecules transportation etc.

Most proteins fold into 3-dimensional structures, either through their amino acids or by requiring molecular
chaperones. There are 4 consecutive levels of protein’s structures [46, 48, 50]:

1. Primary structure (the sequence of amino acids).

2. Secondary structure (a list of bases which are paired in a nucleic acid molecule, a vital consideration in the
design of nucleic acid structures for DNA nanotechnology and DNA computing).

3. Tertiary structure (the overall shape of a protein molecule).

4. Quaternary structure (the structure formed by several protein molecules combined).

Protein folding is the process through which proteins reach to their final three-dimensional structure [46, 47, 48,
49, 50]. Proteins begin their folding session sometimes spontaneously and some other with enzymatic assistance by
chaperones. Theoretically there is an infinite number of proteins that can be formed, each with a different sequence
of amino acids. Nevertheless, only some of them can be form correct and functional structures.

Protein turnover is a term describing the equilibrium between protein synthesis and protein degradation. When
this balance is violated, abnormalities and disfunctionalities appear with undesired effect for the organism. Formed
proteins only “live” for a specific timeslot and afterwards they get degraded and recycled by the cell’s mechanism
of protein turnover. Proteins’ life-span varies from a only some minutes to several years [58]. Unsuccessful folding,
along with the produced misfolded proteins, is a factor to blame for several neurodegenerative diseases, allergies
and other health problems [59, 60, 61].

Another indicative example of biological process for which there is a need for reasoning in infinite horizon is
the fusion/fission mechanism of mitochondria [62, 63, 58]. Mitochondria population inside a cell has to remain
stable, so as neither fusion rates nor fission rates overcome one another, otherwise abnormalities and diseases are
caused [64]. Mitochondria dynamics are of great importance and the current literature is rich with research and
experimental works on this domain.
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Table 1: Table explaining the states and the symbols used in our NBAs and PBAs.

Symbol or State Full Name
Nat Native state
Mis Misfolded state
Path Pathway state
f fold
u unfold
d degradation
s stability

5. Protein folding and Büchi automata

In this part of our study we make a first attempt to describe and characterize biological models with inherited
infinitary properties. We use as a case-study the protein folding problem, which was discussed in the previous section.
The fact that phenomena like this have similarities with non-terminating systems supports our concept. Before we
proceed to our formalizations, we should describe the abbreviations and terminology we use. Automata traditionally
accept strings/words and, consequently, they recognize languages (sets of strings/words). As a consequence we
translate the input of our machines into a simple string of a given alphabet. Moreover, we name each state
according to the state of the biological system at the time of the computation/function, preferring names indicative
enough of the actual state of the biological state.

Our rationale is easily seen from the abbreviation table (Table 1). We model the conformations of the proteins
in each stage of the folding process as states of a NBA. The transitions are labelled with the action undertaken in
each step of the computation, e.g. f stands for “fold” meaning that the automaton reads (or executes) a folding
attempt. The above translation is essential in order to achieve the symbol-writing behaviour.

Firstly, we present two NBAs with their equivalent ω-regular expressions and then, we extend the first of them
into a PBA, altering stochastically the appropriate transitions. We report the differences between these two models
of computations. We note that in the next Section we provide some thoughts for future work in the same direction.
The corresponding ω-regular expression for the NBA of the Fig. 1 is the ((fu)∗fd)ω. Final state of the A is the
nat2 and initial is the nat1.

nat1

mis

nat2

f

f

u, d

d

Figure 1: A simple Büchi automaton A describing protein folding. It accepts the language described by the ω-regular
expression ((fu)∗fd)ω.

Although the final state nat2 is indeed being visited infinitely often, this model has a major drawback: the “bad”
state mis is also being visited infinitely often, since the sequence {f,u} (that is {fold,unfold}) appears infinitely
often as one can clearly observe both in Fig. 1 and the corresponding ω-regular expression. This is actually an
unwanted property for the protein formation procedure. Still, it is very useful in order to present our concept and
then compare the two variants of Büchi automata.

The above observation led us to propose another NBA, more complex than A, but with more realistic properties,
i.e. the A′ automaton of Fig. 2. The Büchi automaton A′ in Fig. 2 is equivalent to the more complex ω-regular
expression ((fu)+(fs+d)+(s+d))∗ (fs+d)ω.
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nat1

nat2
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nat4

path

nat3
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f
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Figure 2: A complex Büchi automaton A′ describing protein folding. It accepts the language described by the ω-regular
expression ((fu)+(fs+d)+(s+d))∗ (fs+d)ω.

Now, this machine is fairly more complex, with more states than the previous NBA; we write |QA′ | > |QA|, where
|QA′ | is the number of states of automaton A′ and |QA| the number of states of A. In this case the undesirable state
mis deriving from the pair {fold,unfold} is visited only finitely, since the part of the A′ which yields the accepting
behaviour occurs in an infinite horizon. This takes place after an arbitrary, distinct read of the symbol f that causes
the transition from the nat1 to the path state:

. . .
d,u−−→ nat1

f−→ path
s−→ . . .

This model is far more realistic, since it tries to capture the stability steps of the protein folding procedure, in
which the protein finds itself in a situation where it does not need neither a folding action nor an unfold/degradation.
This model can be extended and become even more realistic, verifying exact properties of the whole process with
assisted by an actual biological model that describes in details the protein folding mechanism.

The fact that a protein turns up from its unfolded state to the folded one instantly and it “finds” its accurate
structure among, almost, infinite configurations, emphasises the use of stochastic, rather than simply deterministic,
methods to model the nature of the folding problem. As a consequence, we extend our proposed mechanism using
probabilities, expressing the problem in terms of probabilistic Büchi automata (Fig. 3). The corresponding ω-regular
expression for the PBA P depicted in Fig. 3 is the (fd+ fu)∗(fd)ω.

Note that if we ignore the transition possibilities, the NBA we obtain is not equivalent to the PBA. This
observation seems surprising and unnatural, but due to the infinite length of the input it is true. For the PBA
in Fig. 3, the underlying NBA (the A from Fig. 1) recognizes the language ((fu)∗fd)ω by omitting the transition
probabilities. PBAs are generally more expressive than the standard ω-automata. We point that the acceptance of a
PBA is determined by the three semantics we pose on the computation run: the probable semantics, the almost-sure
semantics and the threshold or cut-point semantics.

The probable semantics assigns to the PBA the set of infinite words w for which the runs have positive measure.
Under the almost-sure semantics, a word w is accepted by the PBA if almost all runs for w are accepting and
under the threshold or cut-point semantics the computation accepts with probability greater than a threshold λ.
An equivalent NBA to the PBA of the Fig. 3 is depicted in Fig. 4. Both recognize the same language, but the latter
has fewer states.
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nat1

mis

nat2

f, 1/2

f, 1/2

u, d

d

Figure 3: A probabilistic Büchi automaton P describing the protein folding. It accepts the language described by the
ω-regular expression (fd+ fu)∗(fd)ω.

nat1

mis

path

nat2

f

f
d, u

d

f

Figure 4: The equivalent NBA for the P.

6. Future work

This work contributes to the field of Bioinformatics and especially in the branch of the modelling and verification of
life systems with infinitary behaviour. We combined stochastic models of computation receiving inputs of infinite
magnitude (probabilistic Büchi automata) and we established the use of them in natural phenomena of a living
organism. We presented some of the advantages of this method (the minimization of the state-size) and we discussed
satisfactory simulations of the protein folding mechanisms.

It is of great interest to test other biological models with similar properties to the protein folding, like fu-
sion/fission mechanisms in a cellular mitochondrion, with realistic parameters and circumstances. Also, the choice
of the probability distribution among the transition of the automata used in each case needs further investigations.
For example, with which probabilities a protein folds into the wrong formation, leading to misfolding?

Another aspect of the biological function which is related to the DNA formation, that is under constant research,
is the use of these subsystems as computational devices. DNA computing is a trending term in the current literature,
as well as in industrial applications, and the potentials are prosperous in this domain. Close to the DNA computing
notion, the quantum alternative mechanisms of computation [65], such as quantum automata, can be assisted from
the research on biological processes, especially in the verification of the properties a quantum system should possess.

References

[1] M. Sipser. Introduction to the Theory of Computation. Thomson Course Technology, 2nd edition, 2006.



International Journal of Scientific World 121

[2] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison
Wesley, 2nd edition, 2000.

[3] H. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall, 2nd edition, 1997.

[4] A. Sadot, J. Fisher, D. Barak, Y. Admanit, M. J. Stern, E. J. A. Hubbard, and D. Harel. Toward verified biological
models. Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 5(2):223–234, 2008.

[5] L. M. Adleman et al. Molecular computation of solutions to combinatorial problems. Science-AAAS-Weekly Paper
Edition, 266(5187):1021–1023, 1994.
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