Molecular marker assisted selection as approach to increase the selection efficiency of drought tolerant genotypes

  • Authors

    • Mohammadreza Shiri scientific member of Agricultural and Natural Resources Research Center of Ardebil Province, Moghan, Iran.
    • Karamat Akhavan scientific member of Agricultural and Natural Resources Research Center of Ardebil Province, Moghan, Iran.
    2014-04-19
    https://doi.org/10.14419/ijsw.v2i1.1785
  • Identifying the complete-linked molecular markers with target gene and mapping its chromosome locus is an important goal in plant breeding for gene cloning and marker-aided selection. Due to complexity of the interactions, in most of the agronomic traits, especially the interaction between the grain yield and the environmental factors, classic methods do not function appropriately in improving agronomic traits at present. If the selection is made based on genotype by DNA markers, the efficiency of selection will increase considerably. In a genetic evaluation program, the combination between the data from the linkage between marker position and quantitative traits loci (QTL) as well as the phenotypic data can be used to increase the accuracy of the assessments and thereby the accuracy of selection. The selection in which inherited values are used along with the marker data in selection of superior genotypes in a breeding program is called Marker-assisted-selection (MAS).

     

    Keywords: MAS, QTL, Water Stress, Maize.

  • References

    1. A. H. Paterson, E.S. Lander, J.D. Hewitt, S. Peterson, S. E. Lincoln, S. D. Tanksley, Resolution of quantitative traits into Mendelian factors using a complete linkage map of restriction fragment length polymorphisms, Nature, 335, 1988, 721-726.
    2. A.C. Sanchez, D.S. Brar, N. Huang, Z. Li, G.S. Khush, Sequence tagged site marker-assisted selection for three bacterial blight resistance genes in rice. Crop Science, 40, 2000, 792–797. DOI:10.2135/cropsci2000.403792x
    3. C. Hallden, M. Hansen, N.O. Nilsson, Competition as a source of errors in RAPD analysis, Theoretical and Applied Genetics, 93, 1996, 1185-1192. DOI: 10.1007/BF00223449
    4. C.W. Stuber, S.E. Lincoln, D.W. Wolff, T. Helentjaris, E.S. Lander, Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers, Genetics, 132, 1992,823-839.
    5. E.C.L. Chin, M.L. Senior, , H. Shu, J.S.C. Smith, Maize simple repetitive DNA sequences: abundance and allele variation, Genome, 39, 1996, 866-873.
    6. F. Hospital, L. Moreau, F. Lacoudre, A. Charcosset, A. Gallais, More on the efficiency of marker-assisted selection, Theoretical and Applied Genetics, 95, 1997,1181-1189. DOI:10.1007/s001220050679
    7. G. Taramino, S. Tingey, Simple sequence repeats for germplasm analysis and mapping in maize, Genome, 39, 1996, 277–287. DOI:10.1139/g96-038
    8. I. Paran, RW. Michelmore, Development of reliable PCR based markers linked to powdery mildew resistance genes in lettuce. Theor. Appl. Genet., 85, 1993, 985-993. DOI:10.1007/BF00215038
    9. J. Ruane, A. Sonnino, Marker-Assisted Selection as a Tool for Genetic Improvement of Crops, Livestock, Forestry and Fish in Developing Countries: an Overview of the Issues. In: Guimaraes, E. P., Ruane, J., Scherf, B. D., Sonnino, A. and Dargie, J. D. (Eds.): Marker-assisted Selection - Current Status and Future Perspectives in Crops, Livestock, Forestry and Fish, Food and Agriculture Organization of the United Nations (FAO), 2007, 3-13.
    10. J.M. Ribaut, M. Banziger, T. Setter, G. Edmeades, D. Hoisington, Genetic dissection of drought tolerance in maize: a case study. In: Nguyen H, Blum A, eds. Physiology and biotechnology integration for plant breeding. New York: Marcel Dekker Inc., 2004, 571–611.
    11. J.M. Ribaut, M. Ragot, Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives, Journal of Experimental Botany, 58, 2007, 351–360.
    12. J.M. Thoday, Location of polygenes. Nature, 191,196, 368-370.
    13. K. Sax, The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 8, 1923, 552-560.
    14. K. Semagn, Å. Bjørnstad, M.N. Ndjiondjop, An overview of molecular marker methods for plants, African Journal of Biotechnology, 5,2006, , 2540-2568.
    15. K. Weising, H. Nybom, K. Wolff, W. Meyer, DNA fingerprinting in plants and fungi, CRC Press, Boca Raton Ann Arbor London Tokyo, 1995, 321 pp.
    16. L. Dubey, B.M. Prasanna, B. Ramesh, Analysis of drought tolerant and susceptible maize genotypes using SSR markers tagging candidate genes and consensus QTLs for drought tolerance, The Indian Journal of Genetics and Plant Breeding, 69,2009,344–351.
    17. M. Farsi, A. Bagheri, Principles of plant biotechnology, Mashhad University Pub., Mashhad, Iran, 2011, 554p.
    18. M. Morris, K. Dreher, J.M. Ribaut, M. Khairallah 2003. Money matters (II): costs of maize inbred line conversion schemes at CIMMYT using conventional and marker-assisted selection. Molecular Breeding 11, 235–247. DOI:10.1023/A:1022872604743
    19. M. Ragot, M. Biasiolli, M.F. Delbut, A. Dell’Orco, L. Malgarini, P. Thevenin, J. Vernoy, J. Vivant, R. Zimmermann, G. Gay. Marker-assisted backcrossing: a practical example. In: A. Berville, M. Tersac, eds. Les Colloques, No72, Techniques reutilizations des marqueurs mole´ culaires, Paris,INRA, 1995, 45–56.
    20. M. Sawkins, J. Meyer, J.M. Ribaut, Drought adaptation in cereal crops drought adaptation in maize. In: Ribaut J.M, ed. Drought tolerance in cereals. Binghamtown, NY: The Haworth Press Inc., 2006, 356–387.
    21. M. Shiri, R. Choukan, R.T. Aliyev, Drought tolerance evaluation of maize hybrids using biplot method. Trends Applied Sciences Research, 5, 2010a, 129-137. DOI:10.3923/tasr.2010.129.137
    22. M. Shiri, R.T. Aliyev, R. Choukan, Water stress effects on combining ability and gene action of yield and genetic properties of drought tolerance indices in maize, Research Journal of Environmental Science, 4, 2010b, 75-84. DOI:10.3923/rjes.2010.75.84
    23. M. Willcox, M. Khairallah, D. Bergvinson, Selection for resitance to southwaestern corn borer using marker-assisted and conventional backcrossing, Crop Science, 42, 2002, 1516–1528. DOI:10.2135/cropsci2002.1516
    24. M.J. Kearsey, and A.G.L. Farquhar, QTL analysis in plants; where are we now?, Heredity, 80, 1998,137–142. DOI:10.1046/j.1365-2540.1998.00500.x
    25. Maize Genetics and Genomics Database (2010). http://www.maizegdb.org.
    26. P. J. Sharp, Validation of molecular markers for wheat breeding, Aust. J. Agric. Res., 52, 2001, 1357–1366. DOI:10.1071/AR01052
    27. P. K.Gupta, R.K.Varshney, P.C. Sharma, B. Ramesh, Molecular markers and their applications in wheat breeding, Plant Breeding, 118, 1999, 369-390. DOI: 10.1046/j.1439-0523.1999.00401.x
    28. P.K. Gupta, R.K. Varshney, The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat, Euphytica, 113, 2000,163-185. DOI:10.1023/A:1003910819967
    29. R. Tuberosa, S. Salvi, M.C. Sanguineti, P. Landi, M. MacCaferri, S.Conti, Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize, Annals of Botany 89, 2002, 941–963. DOI: 10.1093/aob/mcf134
    30. S. D. Tanksley, Mapping Polygenes, Annual Review of Genetics, 27, 1993, 205-233. DOI: 10.1146/annurev.ge.27.120193.001225
    31. S.A. Mohammadi, Statistical methods in genetics, Proceedings of 6th Statistics International Conference, Tarbiat Modares University, Tehran, Iran, 26-28 August, 2002, p.371-394.
    32. T.L. Phelps, A.E. Hall, B. Buckner, Microsatellites repeat variation within the y1 gene of maize and teosinte, J. Hered., 87,1996, 396–399.
    33. X. Shan, T.K. Blake, L.E. Talbert, Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat, Theor. Appl. Genet., 98, 1999, 1072-1078. DOI: 10.1007/s001220051169.
  • Downloads

  • How to Cite

    Shiri, M., & Akhavan, K. (2014). Molecular marker assisted selection as approach to increase the selection efficiency of drought tolerant genotypes. International Journal of Scientific World, 2(1), 16-20. https://doi.org/10.14419/ijsw.v2i1.1785