Using MCMC methods in some application problems

  • Authors

    • Parvin Azhdari Assiatant professor at Islamic Azad University
    • Nader Jafarpanahi
    • Arman Beitollahi Assistant professor at Islamic Azad University
    2014-07-19
    https://doi.org/10.14419/ijsw.v2i2.2967
  • Abstract

    MCMC methods are very important tools for estimating unknown parameters in Bayesian models. Especially in the case of high dimensions. Gaussian mixture model is one of the applications of estimating hyper parameters by MCMC method.

    Keywords: Gibbs Sampling, Slice Sampling, Metropolis-Hastings Algorithm, Gaussian, Mixture Model.

  • References

    1. Geman,strut & Geman,Donald,ˮ Stochastic Relaxation,gibbs distribution,and the Bayesian Restoration of imagesˮ, IEEE Transactions on pattern analysis and machin intelligence, November, vol.6, (1984), p:721-741.
    2. Gelfand,A.and Smith,A.F,ˮSampling Based approaches to calculating marginal densitiesˮ, Jornal of the American Statistical Association,vol85, (1990), pp:398-409. http://dx.doi.org/10.1080/01621459.1990.10476213.
    3. Neal,R.M,ˮ Slice sampling (with discution)ˮ, Annals of Statistics,vol31, (2003), pp:705-767. http://dx.doi.org/10.1214/aos/1056562461.
    4. Metropolice,N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, E, ˮEquations of state calculations by fast computing Machienesˮ, Jornal of Chemical Physics, (1953), pp:1087-1092. http://dx.doi.org/10.1063/1.1699114.
    5. Robert, C.P. and Casella, G., ˮMonte Carlo Statistical Methodsˮ, 2nd ed, Springer, Newyork, (2005).
    6. Hastings, D.ˮ Monte Carlo methods using Markov Chains and their applicationˮ, Biometrika, (1970), pp: 97-109. http://dx.doi.org/10.1093/biomet/57.1.97.
    7. Gaver,D. and O'Muircheartaigh, I.,ˮ Robust empirical bayes analyses of eventrates, Technometricsˮ,(1987), pp:1-15. http://dx.doi.org/10.1080/00401706.1987.10488178.
    8. Rubinstein Reuven.y.,ˮ Simulation and the Monte Carlo Methodˮ, wiley New York, (1981).
    9. Henry Horng-Shing Lu.,ˮ Bayesian Methods with Monte Carlo Markov Chains IIIˮ, Institute of Statistics, National Chiao Tung University.
    10. Casella, G. and George, E.,ˮ Explaining the Gibbs Samplerˮ, The Jornal of American statistical Association (JASA), Auguest, vol. 46. No.3, (1992), pp: 167-174.
    11. Robert, G. and Smith AF.M.,ˮSimple conditions the convergence of the Gibbs sampler and Metropolis Hastings algorithmsˮ, Stochastics Processes and their Application, vol 49, (1994), pp:207-216.
    12. Patrick Lam.,ˮ MCMC Methods: Gibbs Sampling and the Metropolis-Hastings Algorithmˮ.
    13. Prof. Darren Wilkinson.,ˮ A simple Metropolis-Hastings independence samplerˮ, School of Mathematics & Statistics, Newcastle University.
    14. J.Q.shi, R.Murray-Smith and D.M.titerington.,ˮ Hierarchical Gaussian Process Mixtures for regressionˮ, Springer Science + Business Media,Inc.Manufactured in the Netherlands.Statistics and Computing vol 15, .(2005), pp:31-41.
  • Downloads

  • How to Cite

    Azhdari, P., Jafarpanahi, N., & Beitollahi, A. (2014). Using MCMC methods in some application problems. International Journal of Scientific World, 2(2), 48-55. https://doi.org/10.14419/ijsw.v2i2.2967

    Received date: 2014-05-30

    Accepted date: 2014-06-30

    Published date: 2014-07-19